/* * Copyright (C) 2009, Lars-Peter Clausen * JZ4720/JZ4740 SoC NAND controller driver * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. * */ #include #include #include #include #include #include #include #define JZ_REG_NAND_CTRL 0x50 #define JZ_REG_NAND_ECC_CTRL 0x100 #define JZ_REG_NAND_DATA 0x104 #define JZ_REG_NAND_PAR0 0x108 #define JZ_REG_NAND_PAR1 0x10C #define JZ_REG_NAND_PAR2 0x110 #define JZ_REG_NAND_IRQ_STAT 0x114 #define JZ_REG_NAND_IRQ_CTRL 0x118 #define JZ_REG_NAND_ERR(x) (0x11C + (x << 2)) #define JZ_NAND_ECC_CTRL_PAR_READY BIT(4) #define JZ_NAND_ECC_CTRL_ENCODING BIT(3) #define JZ_NAND_ECC_CTRL_RS BIT(2) #define JZ_NAND_ECC_CTRL_RESET BIT(1) #define JZ_NAND_ECC_CTRL_ENABLE BIT(0) #define JZ_NAND_STATUS_ERR_COUNT (BIT(31) | BIT(30) | BIT(29)) #define JZ_NAND_STATUS_PAD_FINISH BIT(4) #define JZ_NAND_STATUS_DEC_FINISH BIT(3) #define JZ_NAND_STATUS_ENC_FINISH BIT(2) #define JZ_NAND_STATUS_UNCOR_ERROR BIT(1) #define JZ_NAND_STATUS_ERROR BIT(0) #define JZ_NAND_CTRL_ENABLE_CHIP(x) BIT(x << 1) #define JZ_NAND_CTRL_ASSERT_CHIP(x) BIT((x << 1) + 1) #define JZ_NAND_DATA_ADDR ((void __iomem *)0xB8000000) #define JZ_NAND_CMD_ADDR (JZ_NAND_DATA_ADDR + 0x8000) #define JZ_NAND_ADDR_ADDR (JZ_NAND_DATA_ADDR + 0x10000) struct jz_nand { struct mtd_info mtd; struct nand_chip chip; void __iomem *base; struct resource *mem; struct jz_nand_platform_data *pdata; bool is_reading; }; static inline struct jz_nand *mtd_to_jz_nand(struct mtd_info *mtd) { return container_of(mtd, struct jz_nand, mtd); } static void jz_nand_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl) { struct jz_nand *nand = mtd_to_jz_nand(mtd); struct nand_chip *chip = mtd->priv; uint32_t reg; if (ctrl & NAND_CTRL_CHANGE) { BUG_ON((ctrl & NAND_ALE) && (ctrl & NAND_CLE)); if (ctrl & NAND_ALE) chip->IO_ADDR_W = JZ_NAND_ADDR_ADDR; else if (ctrl & NAND_CLE) chip->IO_ADDR_W = JZ_NAND_CMD_ADDR; else chip->IO_ADDR_W = JZ_NAND_DATA_ADDR; reg = readl(nand->base + JZ_REG_NAND_CTRL); if ( ctrl & NAND_NCE ) reg |= JZ_NAND_CTRL_ASSERT_CHIP(0); else reg &= ~JZ_NAND_CTRL_ASSERT_CHIP(0); writel(reg, nand->base + JZ_REG_NAND_CTRL); } if (dat != NAND_CMD_NONE) writeb(dat, chip->IO_ADDR_W); } static int jz_nand_dev_ready(struct mtd_info *mtd) { struct jz_nand *nand = mtd_to_jz_nand(mtd); return gpio_get_value_cansleep(nand->pdata->busy_gpio); } static void jz_nand_hwctl(struct mtd_info *mtd, int mode) { struct jz_nand *nand = mtd_to_jz_nand(mtd); uint32_t reg; writel(0, nand->base + JZ_REG_NAND_IRQ_STAT); reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL); reg |= JZ_NAND_ECC_CTRL_RESET; reg |= JZ_NAND_ECC_CTRL_ENABLE; reg |= JZ_NAND_ECC_CTRL_RS; switch(mode) { case NAND_ECC_READ: reg &= ~JZ_NAND_ECC_CTRL_ENCODING; nand->is_reading = true; break; case NAND_ECC_WRITE: reg |= JZ_NAND_ECC_CTRL_ENCODING; nand->is_reading = false; break; default: break; } writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL); } static int jz_nand_calculate_ecc_rs(struct mtd_info* mtd, const uint8_t* dat, uint8_t *ecc_code) { struct jz_nand *nand = mtd_to_jz_nand(mtd); uint32_t reg, status; int i; static uint8_t all_ff_ecc[] = {0xcd, 0x9d, 0x90, 0x58, 0xf4, 0x8b, 0xff, 0xb7, 0x6f}; if (nand->is_reading) return 0; do { status = readl(nand->base + JZ_REG_NAND_IRQ_STAT); } while(!(status & JZ_NAND_STATUS_ENC_FINISH)); reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL); reg &= ~JZ_NAND_ECC_CTRL_ENABLE; writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL); for (i = 0; i < 9; ++i) { ecc_code[i] = readb(nand->base + JZ_REG_NAND_PAR0 + i); } /* If the written data is completly 0xff, we also want to write 0xff as * ecc, otherwise we will get in trouble when doing subpage writes. */ if (memcmp(ecc_code, all_ff_ecc, 9) == 0) { memset(ecc_code, 0xff, 9); } return 0; } /*#define printkd printk*/ #define printkd(...) static void correct_data(uint8_t *dat, int index, int mask) { int offset = index & 0x7; uint16_t data; printkd("correct: "); index += (index >> 3); data = dat[index]; data |= dat[index+1] << 8; printkd("0x%x -> ", data); mask ^= (data >> offset) & 0x1ff; data &= ~(0x1ff << offset); data |= (mask << offset); printkd("0x%x\n", data); dat[index] = data & 0xff; dat[index+1] = (data >> 8) & 0xff; } static int jz_nand_correct_ecc_rs(struct mtd_info* mtd, uint8_t *dat, uint8_t *read_ecc, uint8_t *calc_ecc) { struct jz_nand *nand = mtd_to_jz_nand(mtd); int i, error_count, index; uint32_t reg, status, error; uint32_t t; t = read_ecc[0]; if (t == 0xff) { for (i = 1; i < 9; ++i) t &= read_ecc[i]; t &= dat[0]; t &= dat[nand->chip.ecc.size / 2]; t &= dat[nand->chip.ecc.size - 1]; if (t == 0xff) { for (i = 1; i < nand->chip.ecc.size - 1; ++i) t &= dat[i]; if (t == 0xff) return 0; } } for(i = 0; i < 9; ++i) writeb(read_ecc[i], nand->base + JZ_REG_NAND_PAR0 + i); reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL); reg |= JZ_NAND_ECC_CTRL_PAR_READY; writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL); do { status = readl(nand->base + JZ_REG_NAND_IRQ_STAT); } while (!(status & JZ_NAND_STATUS_DEC_FINISH)); reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL); reg &= ~JZ_NAND_ECC_CTRL_ENABLE; writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL); if (status & JZ_NAND_STATUS_ERROR) { if (status & JZ_NAND_STATUS_UNCOR_ERROR) { printkd("uncorrectable ecc:"); for(i = 0; i < 9; ++i) printkd(" 0x%x", read_ecc[i]); printkd("\n"); printkd("uncorrectable data:"); for(i = 0; i < 32; ++i) printkd(" 0x%x", dat[i]); printkd("\n"); return -1; } error_count = (status & JZ_NAND_STATUS_ERR_COUNT) >> 29; printkd("error_count: %d %x\n", error_count, status); for(i = 0; i < error_count; ++i) { error = readl(nand->base + JZ_REG_NAND_ERR(i)); index = ((error >> 16) & 0x1ff) - 1; if (index >= 0 && index < 512) { correct_data(dat, index, error & 0x1ff); } } return error_count; } return 0; } #ifdef CONFIG_MTD_CMDLINE_PARTS static const char *part_probes[] = {"cmdline", NULL}; #endif static int __devinit jz_nand_probe(struct platform_device *pdev) { int ret; struct jz_nand *nand; struct nand_chip *chip; struct mtd_info *mtd; struct jz_nand_platform_data *pdata = pdev->dev.platform_data; #ifdef CONFIG_MTD_PARTITIONS struct mtd_partition *partition_info; int num_partitions = 0; #endif nand = kzalloc(sizeof(*nand), GFP_KERNEL); if (!nand) { dev_err(&pdev->dev, "Failed to allocate device structure.\n"); return -ENOMEM; } nand->mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!nand->mem) { dev_err(&pdev->dev, "Failed to get platform mmio memory\n"); ret = -ENOENT; goto err_free; } nand->mem = request_mem_region(nand->mem->start, resource_size(nand->mem), pdev->name); if (!nand->mem) { dev_err(&pdev->dev, "Failed to request mmio memory region\n"); ret = -EBUSY; goto err_free; } nand->base = ioremap(nand->mem->start, resource_size(nand->mem)); if (!nand->base) { dev_err(&pdev->dev, "Faild to ioremap mmio memory region\n"); ret = -EBUSY; goto err_release_mem; } if (pdata && gpio_is_valid(pdata->busy_gpio)) { ret = gpio_request(pdata->busy_gpio, "jz nand busy line"); if (ret) { dev_err(&pdev->dev, "Failed to request busy gpio %d: %d\n", pdata->busy_gpio, ret); goto err_iounmap; } } mtd = &nand->mtd; chip = &nand->chip; mtd->priv = chip; mtd->owner = THIS_MODULE; mtd->name = "jz4740-nand"; chip->ecc.hwctl = jz_nand_hwctl; chip->ecc.calculate = jz_nand_calculate_ecc_rs; chip->ecc.correct = jz_nand_correct_ecc_rs; chip->ecc.mode = NAND_ECC_HW_OOB_FIRST; chip->ecc.size = 512; chip->ecc.bytes = 9; if (pdata) chip->ecc.layout = pdata->ecc_layout; chip->chip_delay = 50; chip->cmd_ctrl = jz_nand_cmd_ctrl; if (pdata && gpio_is_valid(pdata->busy_gpio)) chip->dev_ready = jz_nand_dev_ready; chip->IO_ADDR_R = JZ_NAND_DATA_ADDR; chip->IO_ADDR_W = JZ_NAND_DATA_ADDR; nand->pdata = pdata; platform_set_drvdata(pdev, nand); ret = nand_scan_ident(mtd, 1); if (ret) { dev_err(&pdev->dev, "Failed to scan nand\n"); goto err_gpio_free; } if (pdata && pdata->ident_callback) { pdata->ident_callback(pdev, chip, &pdata->partitions, &pdata->num_partitions); } ret = nand_scan_tail(mtd); if (ret) { dev_err(&pdev->dev, "Failed to scan nand\n"); goto err_gpio_free; } #ifdef CONFIG_MTD_PARTITIONS #ifdef CONFIG_MTD_CMDLINE_PARTS num_partitions = parse_mtd_partitions(mtd, part_probes, &partition_info, 0); #endif if (num_partitions <= 0 && pdata) { num_partitions = pdata->num_partitions; partition_info = pdata->partitions; } if (num_partitions > 0) ret = add_mtd_partitions(mtd, partition_info, num_partitions); else #endif ret = add_mtd_device(mtd); if (ret) { dev_err(&pdev->dev, "Failed to add mtd device\n"); goto err_nand_release; } dev_info(&pdev->dev, "Successfully registered JZ4740 NAND driver\n"); return 0; err_nand_release: nand_release(&nand->mtd); err_gpio_free: platform_set_drvdata(pdev, NULL); gpio_free(pdata->busy_gpio); err_iounmap: iounmap(nand->base); err_release_mem: release_mem_region(nand->mem->start, resource_size(nand->mem)); err_free: kfree(nand); return ret; } static void __devexit jz_nand_remove(struct platform_device *pdev) { struct jz_nand *nand = platform_get_drvdata(pdev); nand_release(&nand->mtd); iounmap(nand->base); release_mem_region(nand->mem->start, resource_size(nand->mem)); platform_set_drvdata(pdev, NULL); kfree(nand); } struct platform_driver jz_nand_driver = { .probe = jz_nand_probe, .remove = __devexit_p(jz_nand_probe), .driver = { .name = "jz4740-nand", .owner = THIS_MODULE, }, }; static int __init jz_nand_init(void) { return platform_driver_register(&jz_nand_driver); } module_init(jz_nand_init); static void __exit jz_nand_exit(void) { platform_driver_unregister(&jz_nand_driver); } module_exit(jz_nand_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Lars-Peter Clausen "); MODULE_DESCRIPTION("NAND controller driver for JZ4720/JZ4740 SoC"); MODULE_ALIAS("platform:jz4740-nand"); MODULE_ALIAS("platform:jz4720-nand");