#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /*25 descriptors for each dma channel,4096/8/20=25.xx*/ #define IFXMIPS_DMA_DESCRIPTOR_OFFSET 25 #define MAX_DMA_DEVICE_NUM 6 /*max ports connecting to dma */ #define MAX_DMA_CHANNEL_NUM 20 /*max dma channels */ #define DMA_INT_BUDGET 100 /*budget for interrupt handling */ #define DMA_POLL_COUNTER 4 /*fix me, set the correct counter value here! */ extern void mask_and_ack_ifxmips_irq (unsigned int irq_nr); extern void enable_ifxmips_irq (unsigned int irq_nr); extern void disable_ifxmips_irq (unsigned int irq_nr); u64 *g_desc_list; _dma_device_info dma_devs[MAX_DMA_DEVICE_NUM]; _dma_channel_info dma_chan[MAX_DMA_CHANNEL_NUM]; char global_device_name[MAX_DMA_DEVICE_NUM][20] = { {"PPE"}, {"DEU"}, {"SPI"}, {"SDIO"}, {"MCTRL0"}, {"MCTRL1"} }; _dma_chan_map default_dma_map[MAX_DMA_CHANNEL_NUM] = { {"PPE", IFXMIPS_DMA_RX, 0, IFXMIPS_DMA_CH0_INT, 0}, {"PPE", IFXMIPS_DMA_TX, 0, IFXMIPS_DMA_CH1_INT, 0}, {"PPE", IFXMIPS_DMA_RX, 1, IFXMIPS_DMA_CH2_INT, 1}, {"PPE", IFXMIPS_DMA_TX, 1, IFXMIPS_DMA_CH3_INT, 1}, {"PPE", IFXMIPS_DMA_RX, 2, IFXMIPS_DMA_CH4_INT, 2}, {"PPE", IFXMIPS_DMA_TX, 2, IFXMIPS_DMA_CH5_INT, 2}, {"PPE", IFXMIPS_DMA_RX, 3, IFXMIPS_DMA_CH6_INT, 3}, {"PPE", IFXMIPS_DMA_TX, 3, IFXMIPS_DMA_CH7_INT, 3}, {"DEU", IFXMIPS_DMA_RX, 0, IFXMIPS_DMA_CH8_INT, 0}, {"DEU", IFXMIPS_DMA_TX, 0, IFXMIPS_DMA_CH9_INT, 0}, {"DEU", IFXMIPS_DMA_RX, 1, IFXMIPS_DMA_CH10_INT, 1}, {"DEU", IFXMIPS_DMA_TX, 1, IFXMIPS_DMA_CH11_INT, 1}, {"SPI", IFXMIPS_DMA_RX, 0, IFXMIPS_DMA_CH12_INT, 0}, {"SPI", IFXMIPS_DMA_TX, 0, IFXMIPS_DMA_CH13_INT, 0}, {"SDIO", IFXMIPS_DMA_RX, 0, IFXMIPS_DMA_CH14_INT, 0}, {"SDIO", IFXMIPS_DMA_TX, 0, IFXMIPS_DMA_CH15_INT, 0}, {"MCTRL0", IFXMIPS_DMA_RX, 0, IFXMIPS_DMA_CH16_INT, 0}, {"MCTRL0", IFXMIPS_DMA_TX, 0, IFXMIPS_DMA_CH17_INT, 0}, {"MCTRL1", IFXMIPS_DMA_RX, 1, IFXMIPS_DMA_CH18_INT, 1}, {"MCTRL1", IFXMIPS_DMA_TX, 1, IFXMIPS_DMA_CH19_INT, 1} }; _dma_chan_map *chan_map = default_dma_map; volatile u32 g_ifxmips_dma_int_status = 0; volatile int g_ifxmips_dma_in_process = 0;/*0=not in process,1=in process*/ void do_dma_tasklet (unsigned long); DECLARE_TASKLET (dma_tasklet, do_dma_tasklet, 0); u8* common_buffer_alloc (int len, int *byte_offset, void **opt) { u8 *buffer = (u8 *) kmalloc (len * sizeof (u8), GFP_KERNEL); *byte_offset = 0; return buffer; } void common_buffer_free (u8 *dataptr, void *opt) { if (dataptr) kfree(dataptr); } void enable_ch_irq (_dma_channel_info *pCh) { int chan_no = (int)(pCh - dma_chan); int flag; local_irq_save(flag); writel(chan_no, IFXMIPS_DMA_CS); writel(0x4a, IFXMIPS_DMA_CIE); writel(readl(IFXMIPS_DMA_IRNEN) | (1 << chan_no), IFXMIPS_DMA_IRNEN); local_irq_restore(flag); enable_ifxmips_irq(pCh->irq); } void disable_ch_irq (_dma_channel_info *pCh) { int flag; int chan_no = (int) (pCh - dma_chan); local_irq_save(flag); g_ifxmips_dma_int_status &= ~(1 << chan_no); writel(chan_no, IFXMIPS_DMA_CS); writel(0, IFXMIPS_DMA_CIE); writel(readl(IFXMIPS_DMA_IRNEN) & ~(1 << chan_no), IFXMIPS_DMA_IRNEN); local_irq_restore(flag); mask_and_ack_ifxmips_irq(pCh->irq); } void open_chan (_dma_channel_info *pCh) { int flag; int chan_no = (int)(pCh - dma_chan); local_irq_save(flag); writel(chan_no, IFXMIPS_DMA_CS); writel(readl(IFXMIPS_DMA_CCTRL) | 1, IFXMIPS_DMA_CCTRL); if(pCh->dir == IFXMIPS_DMA_RX) enable_ch_irq(pCh); local_irq_restore(flag); } void close_chan(_dma_channel_info *pCh) { int flag; int chan_no = (int) (pCh - dma_chan); local_irq_save(flag); writel(chan_no, IFXMIPS_DMA_CS); writel(readl(IFXMIPS_DMA_CCTRL) & ~1, IFXMIPS_DMA_CCTRL); disable_ch_irq(pCh); local_irq_restore(flag); } void reset_chan (_dma_channel_info *pCh) { int chan_no = (int) (pCh - dma_chan); writel(chan_no, IFXMIPS_DMA_CS); writel(readl(IFXMIPS_DMA_CCTRL) | 2, IFXMIPS_DMA_CCTRL); } void rx_chan_intr_handler (int chan_no) { _dma_device_info *pDev = (_dma_device_info *)dma_chan[chan_no].dma_dev; _dma_channel_info *pCh = &dma_chan[chan_no]; struct rx_desc *rx_desc_p; int tmp; int flag; /*handle command complete interrupt */ rx_desc_p = (struct rx_desc*)pCh->desc_base + pCh->curr_desc; if (rx_desc_p->status.field.OWN == CPU_OWN && rx_desc_p->status.field.C && rx_desc_p->status.field.data_length < 1536){ /*Every thing is correct, then we inform the upper layer */ pDev->current_rx_chan = pCh->rel_chan_no; if(pDev->intr_handler) pDev->intr_handler(pDev, RCV_INT); pCh->weight--; } else { local_irq_save(flag); tmp = readl(IFXMIPS_DMA_CS); writel(chan_no, IFXMIPS_DMA_CS); writel(readl(IFXMIPS_DMA_CIS) | 0x7e, IFXMIPS_DMA_CIS); writel(tmp, IFXMIPS_DMA_CS); g_ifxmips_dma_int_status &= ~(1 << chan_no); local_irq_restore(flag); enable_ifxmips_irq(dma_chan[chan_no].irq); } } inline void tx_chan_intr_handler (int chan_no) { _dma_device_info *pDev = (_dma_device_info*)dma_chan[chan_no].dma_dev; _dma_channel_info *pCh = &dma_chan[chan_no]; int tmp; int flag; local_irq_save(flag); tmp = readl(IFXMIPS_DMA_CS); writel(chan_no, IFXMIPS_DMA_CS); writel(readl(IFXMIPS_DMA_CIS) | 0x7e, IFXMIPS_DMA_CIS); writel(tmp, IFXMIPS_DMA_CS); g_ifxmips_dma_int_status &= ~(1 << chan_no); local_irq_restore(flag); pDev->current_tx_chan = pCh->rel_chan_no; if (pDev->intr_handler) pDev->intr_handler(pDev, TRANSMIT_CPT_INT); } void do_dma_tasklet (unsigned long unused) { int i; int chan_no = 0; int budget = DMA_INT_BUDGET; int weight = 0; int flag; while (g_ifxmips_dma_int_status) { if (budget-- < 0) { tasklet_schedule(&dma_tasklet); return; } chan_no = -1; weight = 0; for (i = 0; i < MAX_DMA_CHANNEL_NUM; i++) { if ((g_ifxmips_dma_int_status & (1 << i)) && dma_chan[i].weight > 0) { if (dma_chan[i].weight > weight) { chan_no = i; weight = dma_chan[chan_no].weight; } } } if (chan_no >= 0) { if (chan_map[chan_no].dir == IFXMIPS_DMA_RX) rx_chan_intr_handler(chan_no); else tx_chan_intr_handler(chan_no); } else { for (i = 0; i < MAX_DMA_CHANNEL_NUM; i++) { dma_chan[i].weight = dma_chan[i].default_weight; } } } local_irq_save(flag); g_ifxmips_dma_in_process = 0; if (g_ifxmips_dma_int_status) { g_ifxmips_dma_in_process = 1; tasklet_schedule(&dma_tasklet); } local_irq_restore(flag); } irqreturn_t dma_interrupt (int irq, void *dev_id) { _dma_channel_info *pCh; int chan_no = 0; int tmp; pCh = (_dma_channel_info*)dev_id; chan_no = (int)(pCh - dma_chan); if (chan_no < 0 || chan_no > 19) BUG(); tmp = readl(IFXMIPS_DMA_IRNEN); writel(0, IFXMIPS_DMA_IRNEN); g_ifxmips_dma_int_status |= 1 << chan_no; writel(tmp, IFXMIPS_DMA_IRNEN); mask_and_ack_ifxmips_irq(irq); if (!g_ifxmips_dma_in_process) { g_ifxmips_dma_in_process = 1; tasklet_schedule(&dma_tasklet); } return IRQ_HANDLED; } _dma_device_info* dma_device_reserve (char *dev_name) { int i; for (i = 0; i < MAX_DMA_DEVICE_NUM; i++) { if (strcmp(dev_name, dma_devs[i].device_name) == 0) { if (dma_devs[i].reserved) return NULL; dma_devs[i].reserved = 1; break; } } return &dma_devs[i]; } void dma_device_release (_dma_device_info *dev) { dev->reserved = 0; } void dma_device_register(_dma_device_info *dev) { int i, j; int chan_no = 0; u8 *buffer; int byte_offset; int flag; _dma_device_info *pDev; _dma_channel_info *pCh; struct rx_desc *rx_desc_p; struct tx_desc *tx_desc_p; for (i = 0; i < dev->max_tx_chan_num; i++) { pCh = dev->tx_chan[i]; if (pCh->control == IFXMIPS_DMA_CH_ON) { chan_no = (int)(pCh - dma_chan); for (j = 0; j < pCh->desc_len; j++) { tx_desc_p = (struct tx_desc*)pCh->desc_base + j; memset(tx_desc_p, 0, sizeof(struct tx_desc)); } local_irq_save(flag); writel(chan_no, IFXMIPS_DMA_CS); /*check if the descriptor length is changed */ if (readl(IFXMIPS_DMA_CDLEN) != pCh->desc_len) writel(pCh->desc_len, IFXMIPS_DMA_CDLEN); writel(readl(IFXMIPS_DMA_CCTRL) & ~1, IFXMIPS_DMA_CCTRL); writel(readl(IFXMIPS_DMA_CCTRL) | 2, IFXMIPS_DMA_CCTRL); while (readl(IFXMIPS_DMA_CCTRL) & 2){}; writel(readl(IFXMIPS_DMA_IRNEN) | (1 << chan_no), IFXMIPS_DMA_IRNEN); writel(0x30100, IFXMIPS_DMA_CCTRL); /*reset and enable channel,enable channel later */ local_irq_restore(flag); } } for (i = 0; i < dev->max_rx_chan_num; i++) { pCh = dev->rx_chan[i]; if (pCh->control == IFXMIPS_DMA_CH_ON) { chan_no = (int)(pCh - dma_chan); for (j = 0; j < pCh->desc_len; j++) { rx_desc_p = (struct rx_desc*)pCh->desc_base + j; pDev = (_dma_device_info*)(pCh->dma_dev); buffer = pDev->buffer_alloc(pCh->packet_size, &byte_offset, (void*)&(pCh->opt[j])); if (!buffer) break; dma_cache_inv((unsigned long) buffer, pCh->packet_size); rx_desc_p->Data_Pointer = (u32)CPHYSADDR((u32)buffer); rx_desc_p->status.word = 0; rx_desc_p->status.field.byte_offset = byte_offset; rx_desc_p->status.field.OWN = DMA_OWN; rx_desc_p->status.field.data_length = pCh->packet_size; } local_irq_save(flag); writel(chan_no, IFXMIPS_DMA_CS); /*check if the descriptor length is changed */ if (readl(IFXMIPS_DMA_CDLEN) != pCh->desc_len) writel(pCh->desc_len, IFXMIPS_DMA_CDLEN); writel(readl(IFXMIPS_DMA_CCTRL) & ~1, IFXMIPS_DMA_CCTRL); writel(readl(IFXMIPS_DMA_CCTRL) | 2, IFXMIPS_DMA_CCTRL); while (readl(IFXMIPS_DMA_CCTRL) & 2){}; writel(0x0a, IFXMIPS_DMA_CIE); /*fix me, should enable all the interrupts here? */ writel(readl(IFXMIPS_DMA_IRNEN) | (1 << chan_no), IFXMIPS_DMA_IRNEN); writel(0x30000, IFXMIPS_DMA_CCTRL); local_irq_restore(flag); enable_ifxmips_irq(dma_chan[chan_no].irq); } } } void dma_device_unregister (_dma_device_info *dev) { int i, j; int chan_no; _dma_channel_info *pCh; struct rx_desc *rx_desc_p; struct tx_desc *tx_desc_p; int flag; for (i = 0; i < dev->max_tx_chan_num; i++) { pCh = dev->tx_chan[i]; if (pCh->control == IFXMIPS_DMA_CH_ON) { chan_no = (int)(dev->tx_chan[i] - dma_chan); local_irq_save (flag); writel(chan_no, IFXMIPS_DMA_CS); pCh->curr_desc = 0; pCh->prev_desc = 0; pCh->control = IFXMIPS_DMA_CH_OFF; writel(0, IFXMIPS_DMA_CIE); /*fix me, should disable all the interrupts here? */ writel(readl(IFXMIPS_DMA_IRNEN) & ~(1 << chan_no), IFXMIPS_DMA_IRNEN); /*disable interrupts */ writel(readl(IFXMIPS_DMA_CCTRL) & ~1, IFXMIPS_DMA_CCTRL); while (readl(IFXMIPS_DMA_CCTRL) & 1) {}; local_irq_restore (flag); for (j = 0; j < pCh->desc_len; j++) { tx_desc_p = (struct tx_desc*)pCh->desc_base + j; if ((tx_desc_p->status.field.OWN == CPU_OWN && tx_desc_p->status.field.C) || (tx_desc_p->status.field.OWN == DMA_OWN && tx_desc_p->status.field.data_length > 0)) { dev->buffer_free ((u8 *) __va (tx_desc_p->Data_Pointer), (void*)pCh->opt[j]); } tx_desc_p->status.field.OWN = CPU_OWN; memset (tx_desc_p, 0, sizeof (struct tx_desc)); } //TODO should free buffer that is not transferred by dma } } for (i = 0; i < dev->max_rx_chan_num; i++) { pCh = dev->rx_chan[i]; chan_no = (int)(dev->rx_chan[i] - dma_chan); disable_ifxmips_irq(pCh->irq); local_irq_save(flag); g_ifxmips_dma_int_status &= ~(1 << chan_no); pCh->curr_desc = 0; pCh->prev_desc = 0; pCh->control = IFXMIPS_DMA_CH_OFF; writel(chan_no, IFXMIPS_DMA_CS); writel(0, IFXMIPS_DMA_CIE); /*fix me, should disable all the interrupts here? */ writel(readl(IFXMIPS_DMA_IRNEN) & ~(1 << chan_no), IFXMIPS_DMA_IRNEN); /*disable interrupts */ writel(readl(IFXMIPS_DMA_CCTRL) & ~1, IFXMIPS_DMA_CCTRL); while (readl(IFXMIPS_DMA_CCTRL) & 1) {}; local_irq_restore (flag); for (j = 0; j < pCh->desc_len; j++) { rx_desc_p = (struct rx_desc *) pCh->desc_base + j; if ((rx_desc_p->status.field.OWN == CPU_OWN && rx_desc_p->status.field.C) || (rx_desc_p->status.field.OWN == DMA_OWN && rx_desc_p->status.field.data_length > 0)) { dev->buffer_free ((u8 *) __va (rx_desc_p-> Data_Pointer), (void *) pCh->opt[j]); } } } } int dma_device_read (struct dma_device_info *dma_dev, u8 ** dataptr, void **opt) { u8 *buf; int len; int byte_offset = 0; void *p = NULL; _dma_channel_info *pCh = dma_dev->rx_chan[dma_dev->current_rx_chan]; struct rx_desc *rx_desc_p; /*get the rx data first */ rx_desc_p = (struct rx_desc *) pCh->desc_base + pCh->curr_desc; if (!(rx_desc_p->status.field.OWN == CPU_OWN && rx_desc_p->status.field.C)) { return 0; } buf = (u8 *) __va (rx_desc_p->Data_Pointer); *(u32*)dataptr = (u32)buf; len = rx_desc_p->status.field.data_length; if (opt) { *(int*)opt = (int)pCh->opt[pCh->curr_desc]; } /*replace with a new allocated buffer */ buf = dma_dev->buffer_alloc(pCh->packet_size, &byte_offset, &p); if (buf) { dma_cache_inv ((unsigned long) buf, pCh->packet_size); pCh->opt[pCh->curr_desc] = p; wmb (); rx_desc_p->Data_Pointer = (u32) CPHYSADDR ((u32) buf); rx_desc_p->status.word = (DMA_OWN << 31) | ((byte_offset) << 23) | pCh->packet_size; wmb (); } else { *(u32 *) dataptr = 0; if (opt) *(int *) opt = 0; len = 0; } /*increase the curr_desc pointer */ pCh->curr_desc++; if (pCh->curr_desc == pCh->desc_len) pCh->curr_desc = 0; return len; } int dma_device_write (struct dma_device_info *dma_dev, u8 * dataptr, int len, void *opt) { int flag; u32 tmp, byte_offset; _dma_channel_info *pCh; int chan_no; struct tx_desc *tx_desc_p; local_irq_save (flag); pCh = dma_dev->tx_chan[dma_dev->current_tx_chan]; chan_no = (int)(pCh - (_dma_channel_info *) dma_chan); tx_desc_p = (struct tx_desc*)pCh->desc_base + pCh->prev_desc; while (tx_desc_p->status.field.OWN == CPU_OWN && tx_desc_p->status.field.C) { dma_dev->buffer_free((u8 *) __va (tx_desc_p->Data_Pointer), pCh->opt[pCh->prev_desc]); memset(tx_desc_p, 0, sizeof (struct tx_desc)); pCh->prev_desc = (pCh->prev_desc + 1) % (pCh->desc_len); tx_desc_p = (struct tx_desc*)pCh->desc_base + pCh->prev_desc; } tx_desc_p = (struct tx_desc*)pCh->desc_base + pCh->curr_desc; /*Check whether this descriptor is available */ if (tx_desc_p->status.field.OWN == DMA_OWN || tx_desc_p->status.field.C) { /*if not , the tell the upper layer device */ dma_dev->intr_handler (dma_dev, TX_BUF_FULL_INT); local_irq_restore(flag); printk (KERN_INFO "%s %d: failed to write!\n", __func__, __LINE__); return 0; } pCh->opt[pCh->curr_desc] = opt; /*byte offset----to adjust the starting address of the data buffer, should be multiple of the burst length. */ byte_offset = ((u32) CPHYSADDR ((u32) dataptr)) % ((dma_dev->tx_burst_len) * 4); dma_cache_wback ((unsigned long) dataptr, len); wmb (); tx_desc_p->Data_Pointer = (u32) CPHYSADDR ((u32) dataptr) - byte_offset; wmb (); tx_desc_p->status.word = (DMA_OWN << 31) | DMA_DESC_SOP_SET | DMA_DESC_EOP_SET | ((byte_offset) << 23) | len; wmb (); pCh->curr_desc++; if (pCh->curr_desc == pCh->desc_len) pCh->curr_desc = 0; /*Check whether this descriptor is available */ tx_desc_p = (struct tx_desc *) pCh->desc_base + pCh->curr_desc; if (tx_desc_p->status.field.OWN == DMA_OWN) { /*if not , the tell the upper layer device */ dma_dev->intr_handler (dma_dev, TX_BUF_FULL_INT); } writel(chan_no, IFXMIPS_DMA_CS); tmp = readl(IFXMIPS_DMA_CCTRL); if (!(tmp & 1)) pCh->open (pCh); local_irq_restore (flag); return len; } int map_dma_chan(_dma_chan_map *map) { int i, j; int result; for (i = 0; i < MAX_DMA_DEVICE_NUM; i++) { strcpy(dma_devs[i].device_name, global_device_name[i]); } for (i = 0; i < MAX_DMA_CHANNEL_NUM; i++) { dma_chan[i].irq = map[i].irq; result = request_irq(dma_chan[i].irq, dma_interrupt, SA_INTERRUPT, "dma-core", (void*)&dma_chan[i]); if (result) { printk("error, cannot get dma_irq!\n"); free_irq(dma_chan[i].irq, (void *) &dma_interrupt); return -EFAULT; } } for (i = 0; i < MAX_DMA_DEVICE_NUM; i++) { dma_devs[i].num_tx_chan = 0; /*set default tx channel number to be one */ dma_devs[i].num_rx_chan = 0; /*set default rx channel number to be one */ dma_devs[i].max_rx_chan_num = 0; dma_devs[i].max_tx_chan_num = 0; dma_devs[i].buffer_alloc = &common_buffer_alloc; dma_devs[i].buffer_free = &common_buffer_free; dma_devs[i].intr_handler = NULL; dma_devs[i].tx_burst_len = 4; dma_devs[i].rx_burst_len = 4; if (i == 0) { writel(0, IFXMIPS_DMA_PS); writel(readl(IFXMIPS_DMA_PCTRL) | ((0xf << 8) | (1 << 6)), IFXMIPS_DMA_PCTRL); /*enable dma drop */ } if (i == 1) { writel(1, IFXMIPS_DMA_PS); writel(0x14, IFXMIPS_DMA_PCTRL); /*deu port setting */ } for (j = 0; j < MAX_DMA_CHANNEL_NUM; j++) { dma_chan[j].byte_offset = 0; dma_chan[j].open = &open_chan; dma_chan[j].close = &close_chan; dma_chan[j].reset = &reset_chan; dma_chan[j].enable_irq = &enable_ch_irq; dma_chan[j].disable_irq = &disable_ch_irq; dma_chan[j].rel_chan_no = map[j].rel_chan_no; dma_chan[j].control = IFXMIPS_DMA_CH_OFF; dma_chan[j].default_weight = IFXMIPS_DMA_CH_DEFAULT_WEIGHT; dma_chan[j].weight = dma_chan[j].default_weight; dma_chan[j].curr_desc = 0; dma_chan[j].prev_desc = 0; } for (j = 0; j < MAX_DMA_CHANNEL_NUM; j++) { if (strcmp(dma_devs[i].device_name, map[j].dev_name) == 0) { if (map[j].dir == IFXMIPS_DMA_RX) { dma_chan[j].dir = IFXMIPS_DMA_RX; dma_devs[i].max_rx_chan_num++; dma_devs[i].rx_chan[dma_devs[i].max_rx_chan_num - 1] = &dma_chan[j]; dma_devs[i].rx_chan[dma_devs[i].max_rx_chan_num - 1]->pri = map[j].pri; dma_chan[j].dma_dev = (void*)&dma_devs[i]; } else if(map[j].dir == IFXMIPS_DMA_TX) { /*TX direction */ dma_chan[j].dir = IFXMIPS_DMA_TX; dma_devs[i].max_tx_chan_num++; dma_devs[i].tx_chan[dma_devs[i].max_tx_chan_num - 1] = &dma_chan[j]; dma_devs[i].tx_chan[dma_devs[i].max_tx_chan_num - 1]->pri = map[j].pri; dma_chan[j].dma_dev = (void*)&dma_devs[i]; } else { printk ("WRONG DMA MAP!\n"); } } } } return 0; } void dma_chip_init(void) { int i; // enable DMA from PMU ifxmips_pmu_enable(IFXMIPS_PMU_PWDCR_DMA); // reset DMA writel(readl(IFXMIPS_DMA_CTRL) | 1, IFXMIPS_DMA_CTRL); // diable all interrupts writel(0, IFXMIPS_DMA_IRNEN); for (i = 0; i < MAX_DMA_CHANNEL_NUM; i++) { writel(i, IFXMIPS_DMA_CS); writel(0x2, IFXMIPS_DMA_CCTRL); writel(0x80000040, IFXMIPS_DMA_CPOLL); writel(readl(IFXMIPS_DMA_CCTRL) & ~0x1, IFXMIPS_DMA_CCTRL); } } int ifxmips_dma_init (void) { int i; dma_chip_init(); if (map_dma_chan(default_dma_map)) BUG(); g_desc_list = (u64*)KSEG1ADDR(__get_free_page(GFP_DMA)); if (g_desc_list == NULL) { printk("no memory for desriptor\n"); return -ENOMEM; } memset(g_desc_list, 0, PAGE_SIZE); for (i = 0; i < MAX_DMA_CHANNEL_NUM; i++) { dma_chan[i].desc_base = (u32)g_desc_list + i * IFXMIPS_DMA_DESCRIPTOR_OFFSET * 8; dma_chan[i].curr_desc = 0; dma_chan[i].desc_len = IFXMIPS_DMA_DESCRIPTOR_OFFSET; writel(i, IFXMIPS_DMA_CS); writel((u32)CPHYSADDR(dma_chan[i].desc_base), IFXMIPS_DMA_CDBA); writel(dma_chan[i].desc_len, IFXMIPS_DMA_CDLEN); } return 0; } arch_initcall(ifxmips_dma_init); void dma_cleanup(void) { int i; free_page(KSEG0ADDR((unsigned long) g_desc_list)); for (i = 0; i < MAX_DMA_CHANNEL_NUM; i++) free_irq(dma_chan[i].irq, (void*)&dma_interrupt); } EXPORT_SYMBOL (dma_device_reserve); EXPORT_SYMBOL (dma_device_release); EXPORT_SYMBOL (dma_device_register); EXPORT_SYMBOL (dma_device_unregister); EXPORT_SYMBOL (dma_device_read); EXPORT_SYMBOL (dma_device_write); MODULE_LICENSE ("GPL");