/* * MTD driver for the SPI Flash Memory support. * * Copyright (c) 2005-2006 Atheros Communications Inc. * Copyright (C) 2006 FON Technology, SL. * Copyright (C) 2006 Imre Kaloz * Copyright (C) 2006 Felix Fietkau * * This code is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ /*=========================================================================== ** !!!! VERY IMPORTANT NOTICE !!!! FLASH DATA STORED IN LITTLE ENDIAN FORMAT ** ** This module contains the Serial Flash access routines for the Atheros SOC. ** The Atheros SOC integrates a SPI flash controller that is used to access ** serial flash parts. The SPI flash controller executes in "Little Endian" ** mode. THEREFORE, all WRITES and READS from the MIPS CPU must be ** BYTESWAPPED! The SPI Flash controller hardware by default performs READ ** ONLY byteswapping when accessed via the SPI Flash Alias memory region ** (Physical Address 0x0800_0000 - 0x0fff_ffff). The data stored in the ** flash sectors is stored in "Little Endian" format. ** ** The spiflash_write() routine performs byteswapping on all write ** operations. **===========================================================================*/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "spiflash.h" /* debugging */ /* #define SPIFLASH_DEBUG */ #ifndef __BIG_ENDIAN #error This driver currently only works with big endian CPU. #endif #define MAX_PARTS 32 static char module_name[] = "spiflash"; #define MIN(a,b) ((a) < (b) ? (a) : (b)) #define FALSE 0 #define TRUE 1 #define ROOTFS_NAME "rootfs" static __u32 spiflash_regread32(int reg); static void spiflash_regwrite32(int reg, __u32 data); static __u32 spiflash_sendcmd (int op); int __init spiflash_init (void); void __exit spiflash_exit (void); static int spiflash_probe_chip (void); static int spiflash_erase (struct mtd_info *mtd,struct erase_info *instr); static int spiflash_read (struct mtd_info *mtd, loff_t from,size_t len,size_t *retlen,u_char *buf); static int spiflash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf); /* Flash configuration table */ struct flashconfig { __u32 byte_cnt; __u32 sector_cnt; __u32 sector_size; __u32 cs_addrmask; } flashconfig_tbl[MAX_FLASH] = { { 0, 0, 0, 0}, { STM_1MB_BYTE_COUNT, STM_1MB_SECTOR_COUNT, STM_1MB_SECTOR_SIZE, 0x0}, { STM_2MB_BYTE_COUNT, STM_2MB_SECTOR_COUNT, STM_2MB_SECTOR_SIZE, 0x0}, { STM_4MB_BYTE_COUNT, STM_4MB_SECTOR_COUNT, STM_4MB_SECTOR_SIZE, 0x0}, { STM_8MB_BYTE_COUNT, STM_8MB_SECTOR_COUNT, STM_8MB_SECTOR_SIZE, 0x0} }; /* Mapping of generic opcodes to STM serial flash opcodes */ struct opcodes { __u16 code; __s8 tx_cnt; __s8 rx_cnt; } stm_opcodes[] = { {STM_OP_WR_ENABLE, 1, 0}, {STM_OP_WR_DISABLE, 1, 0}, {STM_OP_RD_STATUS, 1, 1}, {STM_OP_WR_STATUS, 1, 0}, {STM_OP_RD_DATA, 4, 4}, {STM_OP_FAST_RD_DATA, 1, 0}, {STM_OP_PAGE_PGRM, 8, 0}, {STM_OP_SECTOR_ERASE, 4, 0}, {STM_OP_BULK_ERASE, 1, 0}, {STM_OP_DEEP_PWRDOWN, 1, 0}, {STM_OP_RD_SIG, 4, 1} }; /* Driver private data structure */ struct spiflash_data { struct mtd_info *mtd; struct mtd_partition *parsed_parts; /* parsed partitions */ void *spiflash_readaddr; /* memory mapped data for read */ void *spiflash_mmraddr; /* memory mapped register space */ spinlock_t mutex; }; static struct spiflash_data *spidata; extern int parse_redboot_partitions(struct mtd_info *master, struct mtd_partition **pparts); /***************************************************************************************************/ static __u32 spiflash_regread32(int reg) { volatile __u32 *data = (__u32 *)(spidata->spiflash_mmraddr + reg); return (*data); } static void spiflash_regwrite32(int reg, __u32 data) { volatile __u32 *addr = (__u32 *)(spidata->spiflash_mmraddr + reg); *addr = data; return; } static __u32 spiflash_sendcmd (int op) { __u32 reg; __u32 mask; struct opcodes *ptr_opcode; ptr_opcode = &stm_opcodes[op]; do { reg = spiflash_regread32(SPI_FLASH_CTL); } while (reg & SPI_CTL_BUSY); spiflash_regwrite32(SPI_FLASH_OPCODE, ptr_opcode->code); reg = (reg & ~SPI_CTL_TX_RX_CNT_MASK) | ptr_opcode->tx_cnt | (ptr_opcode->rx_cnt << 4) | SPI_CTL_START; spiflash_regwrite32(SPI_FLASH_CTL, reg); if (ptr_opcode->rx_cnt > 0) { do { reg = spiflash_regread32(SPI_FLASH_CTL); } while (reg & SPI_CTL_BUSY); reg = (__u32) spiflash_regread32(SPI_FLASH_DATA); switch (ptr_opcode->rx_cnt) { case 1: mask = 0x000000ff; break; case 2: mask = 0x0000ffff; break; case 3: mask = 0x00ffffff; break; default: mask = 0xffffffff; break; } reg &= mask; } else { reg = 0; } return reg; } /* Probe SPI flash device * Function returns 0 for failure. * and flashconfig_tbl array index for success. */ static int spiflash_probe_chip (void) { __u32 sig; int flash_size; /* Read the signature on the flash device */ sig = spiflash_sendcmd(SPI_RD_SIG); switch (sig) { case STM_8MBIT_SIGNATURE: flash_size = FLASH_1MB; break; case STM_16MBIT_SIGNATURE: flash_size = FLASH_2MB; break; case STM_32MBIT_SIGNATURE: flash_size = FLASH_4MB; break; case STM_64MBIT_SIGNATURE: flash_size = FLASH_8MB; break; default: printk (KERN_WARNING "%s: Read of flash device signature failed!\n", module_name); return (0); } return (flash_size); } static int spiflash_erase (struct mtd_info *mtd,struct erase_info *instr) { struct opcodes *ptr_opcode; __u32 temp, reg; int finished = FALSE; #ifdef SPIFLASH_DEBUG printk (KERN_DEBUG "%s(addr = 0x%.8x, len = %d)\n",__FUNCTION__,instr->addr,instr->len); #endif /* sanity checks */ if (instr->addr + instr->len > mtd->size) return (-EINVAL); ptr_opcode = &stm_opcodes[SPI_SECTOR_ERASE]; temp = ((__u32)instr->addr << 8) | (__u32)(ptr_opcode->code); spin_lock(&spidata->mutex); spiflash_sendcmd(SPI_WRITE_ENABLE); do { schedule(); reg = spiflash_regread32(SPI_FLASH_CTL); } while (reg & SPI_CTL_BUSY); spiflash_regwrite32(SPI_FLASH_OPCODE, temp); reg = (reg & ~SPI_CTL_TX_RX_CNT_MASK) | ptr_opcode->tx_cnt | SPI_CTL_START; spiflash_regwrite32(SPI_FLASH_CTL, reg); do { schedule(); reg = spiflash_sendcmd(SPI_RD_STATUS); if (!(reg & SPI_STATUS_WIP)) { finished = TRUE; } } while (!finished); spin_unlock(&spidata->mutex); instr->state = MTD_ERASE_DONE; if (instr->callback) instr->callback (instr); #ifdef SPIFLASH_DEBUG printk (KERN_DEBUG "%s return\n",__FUNCTION__); #endif return (0); } static int spiflash_read (struct mtd_info *mtd, loff_t from,size_t len,size_t *retlen,u_char *buf) { u_char *read_addr; #ifdef SPIFLASH_DEBUG printk (KERN_DEBUG "%s(from = 0x%.8x, len = %d)\n",__FUNCTION__,(__u32) from,(int)len); #endif /* sanity checks */ if (!len) return (0); if (from + len > mtd->size) return (-EINVAL); /* we always read len bytes */ *retlen = len; read_addr = (u_char *)(spidata->spiflash_readaddr + from); spin_lock(&spidata->mutex); memcpy(buf, read_addr, len); spin_unlock(&spidata->mutex); return (0); } static int spiflash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf) { int done = FALSE, page_offset, bytes_left, finished; __u32 xact_len, spi_data = 0, opcode, reg; #ifdef SPIFLASH_DEBUG printk (KERN_DEBUG "%s(to = 0x%.8x, len = %d)\n",__FUNCTION__,(__u32) to,len); #endif *retlen = 0; /* sanity checks */ if (!len) return (0); if (to + len > mtd->size) return (-EINVAL); opcode = stm_opcodes[SPI_PAGE_PROGRAM].code; bytes_left = len; while (done == FALSE) { xact_len = MIN(bytes_left, sizeof(__u32)); /* 32-bit writes cannot span across a page boundary * (256 bytes). This types of writes require two page * program operations to handle it correctly. The STM part * will write the overflow data to the beginning of the * current page as opposed to the subsequent page. */ page_offset = (to & (STM_PAGE_SIZE - 1)) + xact_len; if (page_offset > STM_PAGE_SIZE) { xact_len -= (page_offset - STM_PAGE_SIZE); } spin_lock(&spidata->mutex); spiflash_sendcmd(SPI_WRITE_ENABLE); do { schedule(); reg = spiflash_regread32(SPI_FLASH_CTL); } while (reg & SPI_CTL_BUSY); switch (xact_len) { case 1: spi_data = (u32) ((u8) *buf); break; case 2: spi_data = (buf[1] << 8) | buf[0]; break; case 3: spi_data = (buf[2] << 16) | (buf[1] << 8) | buf[0]; break; case 4: spi_data = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0]; break; default: printk("spiflash_write: default case\n"); break; } spiflash_regwrite32(SPI_FLASH_DATA, spi_data); opcode = (opcode & SPI_OPCODE_MASK) | ((__u32)to << 8); spiflash_regwrite32(SPI_FLASH_OPCODE, opcode); reg = (reg & ~SPI_CTL_TX_RX_CNT_MASK) | (xact_len + 4) | SPI_CTL_START; spiflash_regwrite32(SPI_FLASH_CTL, reg); finished = FALSE; do { schedule(); reg = spiflash_sendcmd(SPI_RD_STATUS); if (!(reg & SPI_STATUS_WIP)) { finished = TRUE; } } while (!finished); spin_unlock(&spidata->mutex); bytes_left -= xact_len; to += xact_len; buf += xact_len; *retlen += xact_len; if (bytes_left == 0) { done = TRUE; } } return (0); } #ifdef CONFIG_MTD_PARTITIONS static const char *part_probe_types[] = { "cmdlinepart", "RedBoot", NULL }; #endif static int spiflash_probe(struct platform_device *pdev) { int i, result = -1; int index, num_parts; struct mtd_info *mtd; spidata->spiflash_mmraddr = ioremap_nocache(SPI_FLASH_MMR, SPI_FLASH_MMR_SIZE); if (!spidata->spiflash_mmraddr) { printk (KERN_WARNING "%s: Failed to map flash device\n", module_name); kfree(spidata); spidata = NULL; } mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL); if (!mtd) { kfree(spidata); return (-ENXIO); } printk ("MTD driver for SPI flash.\n"); printk ("%s: Probing for Serial flash ...\n", module_name); if (!(index = spiflash_probe_chip())) { printk (KERN_WARNING "%s: Found no serial flash device\n", module_name); kfree(mtd); kfree(spidata); return (-ENXIO); } printk ("%s: Found SPI serial Flash.\n", module_name); spidata->spiflash_readaddr = ioremap_nocache(SPI_FLASH_READ, flashconfig_tbl[index].byte_cnt); if (!spidata->spiflash_readaddr) { printk (KERN_WARNING "%s: Failed to map flash device\n", module_name); kfree(mtd); kfree(spidata); return (-ENXIO); } mtd->name = module_name; mtd->type = MTD_NORFLASH; mtd->flags = (MTD_CAP_NORFLASH|MTD_WRITEABLE); mtd->size = flashconfig_tbl[index].byte_cnt; mtd->erasesize = flashconfig_tbl[index].sector_size; mtd->writesize = 1; mtd->numeraseregions = 0; mtd->eraseregions = NULL; mtd->erase = spiflash_erase; mtd->read = spiflash_read; mtd->write = spiflash_write; mtd->owner = THIS_MODULE; #ifdef SPIFLASH_DEBUG printk (KERN_DEBUG "mtd->name = %s\n" "mtd->size = 0x%.8x (%uM)\n" "mtd->erasesize = 0x%.8x (%uK)\n" "mtd->numeraseregions = %d\n", mtd->name, mtd->size, mtd->size / (1024*1024), mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions); if (mtd->numeraseregions) { for (result = 0; result < mtd->numeraseregions; result++) { printk (KERN_DEBUG "\n\n" "mtd->eraseregions[%d].offset = 0x%.8x\n" "mtd->eraseregions[%d].erasesize = 0x%.8x (%uK)\n" "mtd->eraseregions[%d].numblocks = %d\n", result,mtd->eraseregions[result].offset, result,mtd->eraseregions[result].erasesize,mtd->eraseregions[result].erasesize / 1024, result,mtd->eraseregions[result].numblocks); } } #endif /* parse redboot partitions */ num_parts = parse_mtd_partitions(mtd, part_probe_types, &spidata->parsed_parts, 0); for (i = 0; i < num_parts; i++) { if (!strcmp(spidata->parsed_parts[i].name, ROOTFS_NAME)) { /* create the root device */ ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, i); } } #ifdef SPIFLASH_DEBUG printk (KERN_DEBUG "Found %d partitions\n", num_parts); #endif if (num_parts) { result = add_mtd_partitions(mtd, spidata->parsed_parts, num_parts); } else { #ifdef SPIFLASH_DEBUG printk (KERN_DEBUG "Did not find any partitions\n"); #endif kfree(mtd); kfree(spidata); return (-ENXIO); } spidata->mtd = mtd; return (result); } static int spiflash_remove (struct platform_device *pdev) { del_mtd_partitions (spidata->mtd); kfree(spidata->mtd); return 0; } struct platform_driver spiflash_driver = { .driver.name = "spiflash", .probe = spiflash_probe, .remove = spiflash_remove, }; int __init spiflash_init (void) { spidata = kmalloc(sizeof(struct spiflash_data), GFP_KERNEL); if (!spidata) return (-ENXIO); spin_lock_init(&spidata->mutex); platform_driver_register(&spiflash_driver); return 0; } void __exit spiflash_exit (void) { kfree(spidata); } module_init (spiflash_init); module_exit (spiflash_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Atheros Communications Inc"); MODULE_DESCRIPTION("MTD driver for SPI Flash on Atheros SOC");