/* * ADMTEK Adm6996 switch configuration module * * Copyright (C) 2005 Felix Fietkau * * Partially based on Broadcom Home Networking Division 10/100 Mbit/s * Ethernet Device Driver (from Montavista 2.4.20_mvl31 Kernel). * Copyright (C) 2004 Broadcom Corporation * * adm_rreg function from adm6996 * Copyright (C) 2004 Nikki Chumakov * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301, USA. */ #include #include #include #include #include #include #include #include "switch-core.h" #include "gpio.h" #define DRIVER_NAME "adm6996" #define DRIVER_VERSION "0.01" static int eecs = 0; static int eesk = 0; static int eedi = 0; static int eerc = 0; static int force = 0; MODULE_AUTHOR("Felix Fietkau "); MODULE_LICENSE("GPL"); #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,52) module_param(eecs, int, 0); module_param(eesk, int, 0); module_param(eedi, int, 0); module_param(eerc, int, 0); module_param(force, int, 0); #else MODULE_PARM(eecs, "i"); MODULE_PARM(eesk, "i"); MODULE_PARM(eedi, "i"); MODULE_PARM(eerc, "i"); MODULE_PARM(force, "i"); #endif /* Minimum timing constants */ #define EECK_EDGE_TIME 3 /* 3us - max(adm 2.5us, 93c 1us) */ #define EEDI_SETUP_TIME 1 /* 1us - max(adm 10ns, 93c 400ns) */ #define EECS_SETUP_TIME 1 /* 1us - max(adm no, 93c 200ns) */ /* Handy macros for writing fixed length values */ #define adm_write8(cs, b) { __u8 val = (__u8) (b); adm_write(cs, &val, sizeof(val)*8); } #define adm_write16(cs, w) { __u16 val = hton16(w); adm_write(cs, (__u8 *)&val, sizeof(val)*8); } #define adm_write32(cs, i) { uint32 val = hton32(i); adm_write(cs, (__u8 *)&val, sizeof(val)*8); } #define atoi(str) simple_strtoul(((str != NULL) ? str : ""), NULL, 0) #ifdef BROADCOM extern char *nvram_get(char *name); /* Return gpio pin number assigned to the named pin */ /* * Variable should be in format: * * gpio=pin_name * * 'def_pin' is returned if there is no such variable found. */ static unsigned int get_gpiopin(char *pin_name, unsigned int def_pin) { char name[] = "gpioXXXX"; char *val; unsigned int pin; /* Go thru all possibilities till a match in pin name */ for (pin = 0; pin < 16; pin ++) { sprintf(name, "gpio%d", pin); val = nvram_get(name); if (val && !strcmp(val, pin_name)) return pin; } return def_pin; } #endif static void adm_write(int cs, char *buf, unsigned int bits) { int i, len = (bits + 7) / 8; __u8 mask; gpio_out(eecs, (cs ? eecs : 0)); udelay(EECK_EDGE_TIME); /* Byte assemble from MSB to LSB */ for (i = 0; i < len; i++) { /* Bit bang from MSB to LSB */ for (mask = 0x80; mask && bits > 0; mask >>= 1, bits --) { /* Clock low */ gpio_out(eesk, 0); udelay(EECK_EDGE_TIME); /* Output on rising edge */ gpio_out(eedi, ((mask & buf[i]) ? eedi : 0)); udelay(EEDI_SETUP_TIME); /* Clock high */ gpio_out(eesk, eesk); udelay(EECK_EDGE_TIME); } } /* Clock low */ gpio_out(eesk, 0); udelay(EECK_EDGE_TIME); if (cs) gpio_out(eecs, 0); } static void adm_read(int cs, char *buf, unsigned int bits) { int i, len = (bits + 7) / 8; __u8 mask; gpio_out(eecs, (cs ? eecs : 0)); udelay(EECK_EDGE_TIME); /* Byte assemble from MSB to LSB */ for (i = 0; i < len; i++) { __u8 byte; /* Bit bang from MSB to LSB */ for (mask = 0x80, byte = 0; mask && bits > 0; mask >>= 1, bits --) { __u8 gp; /* Clock low */ gpio_out(eesk, 0); udelay(EECK_EDGE_TIME); /* Input on rising edge */ gp = gpio_in(); if (gp & eedi) byte |= mask; /* Clock high */ gpio_out(eesk, eesk); udelay(EECK_EDGE_TIME); } *buf++ = byte; } /* Clock low */ gpio_out(eesk, 0); udelay(EECK_EDGE_TIME); if (cs) gpio_out(eecs, 0); } /* Enable outputs with specified value to the chip */ static void adm_enout(__u8 pins, __u8 val) { /* Prepare GPIO output value */ gpio_out(pins, val); /* Enable GPIO outputs */ gpio_outen(pins, pins); udelay(EECK_EDGE_TIME); } /* Disable outputs to the chip */ static void adm_disout(__u8 pins) { /* Disable GPIO outputs */ gpio_outen(pins, 0); udelay(EECK_EDGE_TIME); } /* Advance clock(s) */ static void adm_adclk(int clocks) { int i; for (i = 0; i < clocks; i++) { /* Clock high */ gpio_out(eesk, eesk); udelay(EECK_EDGE_TIME); /* Clock low */ gpio_out(eesk, 0); udelay(EECK_EDGE_TIME); } } static __u32 adm_rreg(__u8 table, __u8 addr) { /* cmd: 01 10 T DD R RRRRRR */ __u8 bits[6] = { 0xFF, 0xFF, 0xFF, 0xFF, (0x06 << 4) | ((table & 0x01) << 3 | (addr&64)>>6), ((addr&63)<<2) }; __u8 rbits[4]; /* Enable GPIO outputs with all pins to 0 */ adm_enout((__u8)(eecs | eesk | eedi), 0); adm_write(0, bits, 46); adm_disout((__u8)(eedi)); adm_adclk(2); adm_read (0, rbits, 32); /* Extra clock(s) required per datasheet */ adm_adclk(2); /* Disable GPIO outputs */ adm_disout((__u8)(eecs | eesk)); if (!table) /* EEPROM has 16-bit registers, but pumps out two registers in one request */ return (addr & 0x01 ? (rbits[0]<<8) | rbits[1] : (rbits[2]<<8) | (rbits[3])); else return (rbits[0]<<24) | (rbits[1]<<16) | (rbits[2]<<8) | rbits[3]; } /* Write chip configuration register */ /* Follow 93c66 timing and chip's min EEPROM timing requirement */ void adm_wreg(__u8 addr, __u16 val) { /* cmd(27bits): sb(1) + opc(01) + addr(bbbbbbbb) + data(bbbbbbbbbbbbbbbb) */ __u8 bits[4] = { (0x05 << 5) | (addr >> 3), (addr << 5) | (__u8)(val >> 11), (__u8)(val >> 3), (__u8)(val << 5) }; /* Enable GPIO outputs with all pins to 0 */ adm_enout((__u8)(eecs | eesk | eedi), 0); /* Write cmd. Total 27 bits */ adm_write(1, bits, 27); /* Extra clock(s) required per datasheet */ adm_adclk(2); /* Disable GPIO outputs */ adm_disout((__u8)(eecs | eesk | eedi)); } /* Port configuration registers */ static int port_conf[] = { 0x01, 0x03, 0x05, 0x07, 0x08, 0x09 }; /* Bits in VLAN port mapping */ static int vlan_ports[] = { 1 << 0, 1 << 2, 1 << 4, 1 << 6, 1 << 7, 1 << 8 }; static int handle_vlan_port_read(void *driver, char *buf, int nr) { int ports, i, c, len = 0; if ((nr < 0) || (nr > 15)) return 0; /* Get VLAN port map */ ports = adm_rreg(0, 0x13 + nr); for (i = 0; i <= 5; i++) { if (ports & vlan_ports[i]) { c = adm_rreg(0, port_conf[i]); len += sprintf(buf + len, "%d", i); if (c & (1 << 4)) { buf[len++] = 't'; if (((c & (0xf << 10)) >> 10) == nr) buf[len++] = '*'; } else if (i == 5) buf[len++] = 'u'; buf[len++] = '\t'; } } len += sprintf(buf + len, "\n"); return len; } static int handle_vlan_port_write(void *driver, char *buf, int nr) { int i, cfg, ports; switch_driver *d = (switch_driver *) driver; switch_vlan_config *c = switch_parse_vlan(d, buf); if (c == NULL) return -1; ports = adm_rreg(0, 0x13 + nr); for (i = 0; i < d->ports; i++) { if (c->port & (1 << i)) { ports |= vlan_ports[i]; cfg = adm_rreg(0, port_conf[i]); /* Tagging */ if (c->untag & (1 << i)) cfg &= ~(1 << 4); else cfg |= (1 << 4); if ((c->untag | c->pvid) & (1 << i)) { cfg = (cfg & ~(0xf << 10)) | (nr << 10); } adm_wreg(port_conf[i], (__u16) cfg); } else { ports &= ~(vlan_ports[i]); } } adm_wreg(0x13 + nr, (__u16) ports); return 0; } static int handle_port_enable_read(void *driver, char *buf, int nr) { return sprintf(buf, "%d\n", ((adm_rreg(0, port_conf[nr]) & (1 << 5)) ? 0 : 1)); } static int handle_port_enable_write(void *driver, char *buf, int nr) { int reg = adm_rreg(0, port_conf[nr]); if (buf[0] == '0') reg |= (1 << 5); else if (buf[0] == '1') reg &= ~(1 << 5); else return -1; adm_wreg(port_conf[nr], (__u16) reg); return 0; } static int handle_port_media_read(void *driver, char *buf, int nr) { int len; int media = 0; int reg = adm_rreg(0, port_conf[nr]); if (reg & (1 << 1)) media |= SWITCH_MEDIA_AUTO; if (reg & (1 << 2)) media |= SWITCH_MEDIA_100; if (reg & (1 << 3)) media |= SWITCH_MEDIA_FD; len = switch_print_media(buf, media); return len + sprintf(buf + len, "\n"); } static int handle_port_media_write(void *driver, char *buf, int nr) { int media = switch_parse_media(buf); int reg = adm_rreg(0, port_conf[nr]); if (media < 0) return -1; reg &= ~((1 << 1) | (1 << 2) | (1 << 3)); if (media & SWITCH_MEDIA_AUTO) reg |= 1 << 1; if (media & SWITCH_MEDIA_100) reg |= 1 << 2; if (media & SWITCH_MEDIA_FD) reg |= 1 << 3; adm_wreg(port_conf[nr], reg); return 0; } static int handle_vlan_enable_read(void *driver, char *buf, int nr) { return sprintf(buf, "%d\n", ((adm_rreg(0, 0x11) & (1 << 5)) ? 1 : 0)); } static int handle_vlan_enable_write(void *driver, char *buf, int nr) { int reg = adm_rreg(0, 0x11); if (buf[0] == '1') reg |= (1 << 5); else if (buf[0] == '0') reg &= ~(1 << 5); else return -1; adm_wreg(0x11, (__u16) reg); return 0; } static int handle_reset(void *driver, char *buf, int nr) { int i; u32 cfg; /* * Reset sequence: RC high->low(100ms)->high(30ms) * * WAR: Certain boards don't have the correct power on * reset logic therefore we must explicitly perform the * sequence in software. */ if (eerc) { /* Keep RC high for at least 20ms */ adm_enout(eerc, eerc); for (i = 0; i < 20; i ++) udelay(1000); /* Keep RC low for at least 100ms */ adm_enout(eerc, 0); for (i = 0; i < 100; i++) udelay(1000); /* Set default configuration */ adm_enout((__u8)(eesk | eedi), eesk); /* Keep RC high for at least 30ms */ adm_enout(eerc, eerc); for (i = 0; i < 30; i++) udelay(1000); /* Leave RC high and disable GPIO outputs */ adm_disout((__u8)(eecs | eesk | eedi)); } /* set up initial configuration for cpu port */ cfg = (0x8000 | /* Auto MDIX */ (0xf << 10) | /* PVID */ (1 << 4) | /* Tagging */ 0xf); /* full duplex, 100Mbps, auto neg, flow ctrl */ adm_wreg(port_conf[5], cfg); /* vlan mode select register (0x11): vlan on, mac clone */ adm_wreg(0x11, 0xff30); return 0; } static int handle_registers(void *driver, char *buf, int nr) { int i, len = 0; for (i = 0; i <= 0x33; i++) { len += sprintf(buf + len, "0x%02x: 0x%04x\n", i, adm_rreg(0, i)); } return len; } static int handle_counters(void *driver, char *buf, int nr) { int i, len = 0; for (i = 0; i <= 0x3c; i++) { len += sprintf(buf + len, "0x%02x: 0x%08x\n", i, adm_rreg(1, i)); } return len; } static int detect_adm(void) { int ret = 0; #ifdef BROADCOM int boardflags = atoi(nvram_get("boardflags")); int boardnum = atoi(nvram_get("boardnum")); if ((boardnum == 44) && (boardflags == 0x0388)) { /* Trendware TEW-411BRP+ */ ret = 1; eecs = get_gpiopin("adm_eecs", 2); eesk = get_gpiopin("adm_eesk", 3); eedi = get_gpiopin("adm_eedi", 4); eerc = get_gpiopin("adm_rc", 5); } else if ((boardflags & 0x80) || force) { ret = 1; eecs = get_gpiopin("adm_eecs", 2); eesk = get_gpiopin("adm_eesk", 3); eedi = get_gpiopin("adm_eedi", 4); eerc = get_gpiopin("adm_rc", 0); } else if ((strcmp(nvram_get("boardtype") ?: "", "bcm94710dev") == 0) && (strncmp(nvram_get("boardnum") ?: "", "42", 2) == 0)) { /* WRT54G v1.1 hack */ eecs = 2; eesk = 3; eedi = 5; ret = 1; } if (eecs) eecs = (1 << eecs); if (eesk) eesk = (1 << eesk); if (eedi) eedi = (1 << eedi); if (eerc) eerc = (1 << eerc); #else ret = 1; #endif return ret; } static int __init adm_init(void) { switch_config cfg[] = { {"registers", handle_registers, NULL}, {"counters", handle_counters, NULL}, {"reset", NULL, handle_reset}, {"enable_vlan", handle_vlan_enable_read, handle_vlan_enable_write}, {NULL, NULL, NULL} }; switch_config port[] = { {"enable", handle_port_enable_read, handle_port_enable_write}, {"media", handle_port_media_read, handle_port_media_write}, {NULL, NULL, NULL} }; switch_config vlan[] = { {"ports", handle_vlan_port_read, handle_vlan_port_write}, {NULL, NULL, NULL} }; switch_driver driver = { name: DRIVER_NAME, version: DRIVER_VERSION, interface: "eth0", ports: 6, cpuport: 5, vlans: 16, driver_handlers: cfg, port_handlers: port, vlan_handlers: vlan, }; if (!detect_adm()) return -ENODEV; return switch_register_driver(&driver); } static void __exit adm_exit(void) { switch_unregister_driver(DRIVER_NAME); } module_init(adm_init); module_exit(adm_exit);