/* * Copyright (C) 2006 Felix Fietkau * Copyright (C) 2005 Waldemar Brodkorb * Copyright (C) 2004 Florian Schirmer (jolt@tuxbox.org) * * original functions for finding root filesystem from Mike Baker * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 675 Mass Ave, Cambridge, MA 02139, USA. * * * Copyright 2004, Broadcom Corporation * All Rights Reserved. * * THIS SOFTWARE IS OFFERED "AS IS", AND BROADCOM GRANTS NO WARRANTIES OF ANY * KIND, EXPRESS OR IMPLIED, BY STATUTE, COMMUNICATION OR OTHERWISE. BROADCOM * SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS * FOR A SPECIFIC PURPOSE OR NONINFRINGEMENT CONCERNING THIS SOFTWARE. * * Flash mapping for BCM947XX boards * */ #include #include #include #include #include #include #ifdef CONFIG_MTD_PARTITIONS #include #endif #include #include #include #include #include #include #include #include #include #include #include #include /* Global SB handle */ extern void *bcm947xx_sbh; extern spinlock_t bcm947xx_sbh_lock; /* Convenience */ #define sbh bcm947xx_sbh #define sbh_lock bcm947xx_sbh_lock #define WINDOW_ADDR 0x1fc00000 #define WINDOW_SIZE 0x400000 #define BUSWIDTH 2 static struct mtd_info *bcm947xx_mtd; __u8 bcm947xx_map_read8(struct map_info *map, unsigned long ofs) { if (map->map_priv_2 == 1) return __raw_readb(map->map_priv_1 + ofs); u16 val = __raw_readw(map->map_priv_1 + (ofs & ~1)); if (ofs & 1) return ((val >> 8) & 0xff); else return (val & 0xff); } __u16 bcm947xx_map_read16(struct map_info *map, unsigned long ofs) { return __raw_readw(map->map_priv_1 + ofs); } __u32 bcm947xx_map_read32(struct map_info *map, unsigned long ofs) { return __raw_readl(map->map_priv_1 + ofs); } void bcm947xx_map_copy_from(struct map_info *map, void *to, unsigned long from, ssize_t len) { if (len==1) { memcpy_fromio(to, map->map_priv_1 + from, len); } else { int i; u16 *dest = (u16 *) to; u16 *src = (u16 *) (map->map_priv_1 + from); for (i = 0; i < (len / 2); i++) { dest[i] = src[i]; } if (len & 1) *((u8 *)dest+len-1) = src[i] & 0xff; } } void bcm947xx_map_write8(struct map_info *map, __u8 d, unsigned long adr) { __raw_writeb(d, map->map_priv_1 + adr); mb(); } void bcm947xx_map_write16(struct map_info *map, __u16 d, unsigned long adr) { __raw_writew(d, map->map_priv_1 + adr); mb(); } void bcm947xx_map_write32(struct map_info *map, __u32 d, unsigned long adr) { __raw_writel(d, map->map_priv_1 + adr); mb(); } void bcm947xx_map_copy_to(struct map_info *map, unsigned long to, const void *from, ssize_t len) { memcpy_toio(map->map_priv_1 + to, from, len); } struct map_info bcm947xx_map = { name: "Physically mapped flash", size: WINDOW_SIZE, buswidth: BUSWIDTH, read8: bcm947xx_map_read8, read16: bcm947xx_map_read16, read32: bcm947xx_map_read32, copy_from: bcm947xx_map_copy_from, write8: bcm947xx_map_write8, write16: bcm947xx_map_write16, write32: bcm947xx_map_write32, copy_to: bcm947xx_map_copy_to }; #ifdef CONFIG_MTD_PARTITIONS static struct mtd_partition bcm947xx_parts[] = { { name: "cfe", offset: 0, size: 0, mask_flags: MTD_WRITEABLE, }, { name: "linux", offset: 0, size: 0, }, { name: "rootfs", offset: 0, size: 0, }, { name: "nvram", offset: 0, size: 0, }, { name: "rootfs_data", offset: 0, size: 0, }, { name: NULL, }, }; static int __init find_cfe_size(struct mtd_info *mtd, size_t size) { struct trx_header *trx; unsigned char buf[512]; int off; size_t len; int blocksize; trx = (struct trx_header *) buf; blocksize = mtd->erasesize; if (blocksize < 0x10000) blocksize = 0x10000; for (off = (128*1024); off < size; off += blocksize) { memset(buf, 0xe5, sizeof(buf)); /* * Read into buffer */ if (MTD_READ(mtd, off, sizeof(buf), &len, buf) || len != sizeof(buf)) continue; /* found a TRX header */ if (le32_to_cpu(trx->magic) == TRX_MAGIC) { goto found; } } printk(KERN_NOTICE "%s: Couldn't find bootloader size\n", mtd->name); return -1; found: printk(KERN_NOTICE "bootloader size: %d\n", off); return off; } /* * Copied from mtdblock.c * * Cache stuff... * * Since typical flash erasable sectors are much larger than what Linux's * buffer cache can handle, we must implement read-modify-write on flash * sectors for each block write requests. To avoid over-erasing flash sectors * and to speed things up, we locally cache a whole flash sector while it is * being written to until a different sector is required. */ static void erase_callback(struct erase_info *done) { wait_queue_head_t *wait_q = (wait_queue_head_t *)done->priv; wake_up(wait_q); } static int erase_write (struct mtd_info *mtd, unsigned long pos, int len, const char *buf) { struct erase_info erase; DECLARE_WAITQUEUE(wait, current); wait_queue_head_t wait_q; size_t retlen; int ret; /* * First, let's erase the flash block. */ init_waitqueue_head(&wait_q); erase.mtd = mtd; erase.callback = erase_callback; erase.addr = pos; erase.len = len; erase.priv = (u_long)&wait_q; set_current_state(TASK_INTERRUPTIBLE); add_wait_queue(&wait_q, &wait); ret = MTD_ERASE(mtd, &erase); if (ret) { set_current_state(TASK_RUNNING); remove_wait_queue(&wait_q, &wait); printk (KERN_WARNING "erase of region [0x%lx, 0x%x] " "on \"%s\" failed\n", pos, len, mtd->name); return ret; } schedule(); /* Wait for erase to finish. */ remove_wait_queue(&wait_q, &wait); /* * Next, writhe data to flash. */ ret = MTD_WRITE (mtd, pos, len, &retlen, buf); if (ret) return ret; if (retlen != len) return -EIO; return 0; } static int __init find_root(struct mtd_info *mtd, size_t size, struct mtd_partition *part) { struct trx_header trx, *trx2; unsigned char buf[512], *block; int off, blocksize; u32 i, crc = ~0; size_t len; struct squashfs_super_block *sb = (struct squashfs_super_block *) buf; blocksize = mtd->erasesize; if (blocksize < 0x10000) blocksize = 0x10000; for (off = (128*1024); off < size; off += blocksize) { memset(&trx, 0xe5, sizeof(trx)); /* * Read into buffer */ if (MTD_READ(mtd, off, sizeof(trx), &len, (char *) &trx) || len != sizeof(trx)) continue; /* found a TRX header */ if (le32_to_cpu(trx.magic) == TRX_MAGIC) { part->offset = le32_to_cpu(trx.offsets[2]) ? : le32_to_cpu(trx.offsets[1]); part->size = le32_to_cpu(trx.len); part->size -= part->offset; part->offset += off; goto found; } } printk(KERN_NOTICE "%s: Couldn't find root filesystem\n", mtd->name); return -1; found: if (part->size == 0) return 0; if (MTD_READ(mtd, part->offset, sizeof(buf), &len, buf) || len != sizeof(buf)) return 0; if (*((__u32 *) buf) == SQUASHFS_MAGIC) { printk(KERN_INFO "%s: Filesystem type: squashfs, size=0x%x\n", mtd->name, (u32) sb->bytes_used); /* Update the squashfs partition size based on the superblock info */ part->size = sb->bytes_used; len = part->offset + part->size; len += (mtd->erasesize - 1); len &= ~(mtd->erasesize - 1); part->size = len - part->offset; } else if (*((__u16 *) buf) == JFFS2_MAGIC_BITMASK) { printk(KERN_INFO "%s: Filesystem type: jffs2\n", mtd->name); /* Move the squashfs outside of the trx */ part->size = 0; } else { printk(KERN_INFO "%s: Filesystem type: unknown\n", mtd->name); return 0; } if (trx.len != part->offset + part->size - off) { /* Update the trx offsets and length */ trx.len = part->offset + part->size - off; /* Update the trx crc32 */ for (i = (u32) &(((struct trx_header *)NULL)->flag_version); i <= trx.len; i += sizeof(buf)) { if (MTD_READ(mtd, off + i, sizeof(buf), &len, buf) || len != sizeof(buf)) return 0; crc = crc32_le(crc, buf, min(sizeof(buf), trx.len - i)); } trx.crc32 = crc; /* read first eraseblock from the trx */ trx2 = block = kmalloc(mtd->erasesize, GFP_KERNEL); if (MTD_READ(mtd, off, mtd->erasesize, &len, block) || len != mtd->erasesize) { printk("Error accessing the first trx eraseblock\n"); return 0; } printk("Updating TRX offsets and length:\n"); printk("old trx = [0x%08x, 0x%08x, 0x%08x], len=0x%08x crc32=0x%08x\n", trx2->offsets[0], trx2->offsets[1], trx2->offsets[2], trx2->len, trx2->crc32); printk("new trx = [0x%08x, 0x%08x, 0x%08x], len=0x%08x crc32=0x%08x\n", trx.offsets[0], trx.offsets[1], trx.offsets[2], trx.len, trx.crc32); /* Write updated trx header to the flash */ memcpy(block, &trx, sizeof(trx)); if (mtd->unlock) mtd->unlock(mtd, off, mtd->erasesize); erase_write(mtd, off, mtd->erasesize, block); if (mtd->sync) mtd->sync(mtd); kfree(block); printk("Done\n"); } return part->size; } struct mtd_partition * __init init_mtd_partitions(struct mtd_info *mtd, size_t size) { int cfe_size; if ((cfe_size = find_cfe_size(mtd,size)) < 0) return NULL; /* boot loader */ bcm947xx_parts[0].offset = 0; bcm947xx_parts[0].size = cfe_size; /* nvram */ if (cfe_size != 384 * 1024) { bcm947xx_parts[3].offset = size - ROUNDUP(NVRAM_SPACE, mtd->erasesize); bcm947xx_parts[3].size = ROUNDUP(NVRAM_SPACE, mtd->erasesize); } else { /* nvram (old 128kb config partition on netgear wgt634u) */ bcm947xx_parts[3].offset = bcm947xx_parts[0].size; bcm947xx_parts[3].size = ROUNDUP(NVRAM_SPACE, mtd->erasesize); } /* linux (kernel and rootfs) */ if (cfe_size != 384 * 1024) { bcm947xx_parts[1].offset = bcm947xx_parts[0].size; bcm947xx_parts[1].size = bcm947xx_parts[3].offset - bcm947xx_parts[1].offset; } else { /* do not count the elf loader, which is on one block */ bcm947xx_parts[1].offset = bcm947xx_parts[0].size + bcm947xx_parts[3].size + mtd->erasesize; bcm947xx_parts[1].size = size - bcm947xx_parts[0].size - (2*bcm947xx_parts[3].size) - mtd->erasesize; } /* find and size rootfs */ if (find_root(mtd,size,&bcm947xx_parts[2])==0) { /* entirely jffs2 */ bcm947xx_parts[4].name = NULL; bcm947xx_parts[2].size = size - bcm947xx_parts[2].offset - bcm947xx_parts[3].size; } else { /* legacy setup */ /* calculate leftover flash, and assign it to the jffs2 partition */ if (cfe_size != 384 * 1024) { bcm947xx_parts[4].offset = bcm947xx_parts[2].offset + bcm947xx_parts[2].size; if ((bcm947xx_parts[4].offset % mtd->erasesize) > 0) { bcm947xx_parts[4].offset += mtd->erasesize - (bcm947xx_parts[4].offset % mtd->erasesize); } bcm947xx_parts[4].size = bcm947xx_parts[3].offset - bcm947xx_parts[4].offset; } else { bcm947xx_parts[4].offset = bcm947xx_parts[2].offset + bcm947xx_parts[2].size; if ((bcm947xx_parts[4].offset % mtd->erasesize) > 0) { bcm947xx_parts[4].offset += mtd->erasesize - (bcm947xx_parts[4].offset % mtd->erasesize); } bcm947xx_parts[4].size = size - bcm947xx_parts[3].size - bcm947xx_parts[4].offset; } } return bcm947xx_parts; } #endif mod_init_t init_bcm947xx_map(void) { ulong flags; uint coreidx; chipcregs_t *cc; uint32 fltype; uint window_addr = 0, window_size = 0; size_t size; int ret = 0; #ifdef CONFIG_MTD_PARTITIONS struct mtd_partition *parts; int i; #endif spin_lock_irqsave(&sbh_lock, flags); coreidx = sb_coreidx(sbh); /* Check strapping option if chipcommon exists */ if ((cc = sb_setcore(sbh, SB_CC, 0))) { fltype = readl(&cc->capabilities) & CC_CAP_FLASH_MASK; if (fltype == PFLASH) { bcm947xx_map.map_priv_2 = 1; window_addr = 0x1c000000; bcm947xx_map.size = window_size = 32 * 1024 * 1024; if ((readl(&cc->flash_config) & CC_CFG_DS) == 0) bcm947xx_map.buswidth = 1; } } else { fltype = PFLASH; bcm947xx_map.map_priv_2 = 0; window_addr = WINDOW_ADDR; window_size = WINDOW_SIZE; } sb_setcoreidx(sbh, coreidx); spin_unlock_irqrestore(&sbh_lock, flags); if (fltype != PFLASH) { printk(KERN_ERR "pflash: found no supported devices\n"); ret = -ENODEV; goto fail; } bcm947xx_map.map_priv_1 = (unsigned long) ioremap(window_addr, window_size); if (!bcm947xx_map.map_priv_1) { printk(KERN_ERR "Failed to ioremap\n"); return -EIO; } if (!(bcm947xx_mtd = do_map_probe("cfi_probe", &bcm947xx_map))) { printk(KERN_ERR "pflash: cfi_probe failed\n"); iounmap((void *)bcm947xx_map.map_priv_1); return -ENXIO; } bcm947xx_mtd->module = THIS_MODULE; size = bcm947xx_mtd->size; printk(KERN_NOTICE "Flash device: 0x%x at 0x%x\n", size, window_addr); #ifdef CONFIG_MTD_PARTITIONS parts = init_mtd_partitions(bcm947xx_mtd, size); for (i = 0; parts[i].name; i++); ret = add_mtd_partitions(bcm947xx_mtd, parts, i); if (ret) { printk(KERN_ERR "Flash: add_mtd_partitions failed\n"); goto fail; } #endif return 0; fail: if (bcm947xx_mtd) map_destroy(bcm947xx_mtd); if (bcm947xx_map.map_priv_1) iounmap((void *) bcm947xx_map.map_priv_1); bcm947xx_map.map_priv_1 = 0; return ret; } mod_exit_t cleanup_bcm947xx_map(void) { #ifdef CONFIG_MTD_PARTITIONS del_mtd_partitions(bcm947xx_mtd); #endif map_destroy(bcm947xx_mtd); iounmap((void *) bcm947xx_map.map_priv_1); bcm947xx_map.map_priv_1 = 0; } module_init(init_bcm947xx_map); module_exit(cleanup_bcm947xx_map);