/* * MTD driver for the SPI Flash Memory support. * * Copyright (c) 2005-2006 Atheros Communications Inc. * Copyright (C) 2006-2007 FON Technology, SL. * Copyright (C) 2006-2007 Imre Kaloz * Copyright (C) 2006-2007 Felix Fietkau * * This code is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */ /*=========================================================================== ** !!!! VERY IMPORTANT NOTICE !!!! FLASH DATA STORED IN LITTLE ENDIAN FORMAT ** ** This module contains the Serial Flash access routines for the Atheros SOC. ** The Atheros SOC integrates a SPI flash controller that is used to access ** serial flash parts. The SPI flash controller executes in "Little Endian" ** mode. THEREFORE, all WRITES and READS from the MIPS CPU must be ** BYTESWAPPED! The SPI Flash controller hardware by default performs READ ** ONLY byteswapping when accessed via the SPI Flash Alias memory region ** (Physical Address 0x0800_0000 - 0x0fff_ffff). The data stored in the ** flash sectors is stored in "Little Endian" format. ** ** The spiflash_write() routine performs byteswapping on all write ** operations. **===========================================================================*/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "spiflash.h" #ifndef __BIG_ENDIAN #error This driver currently only works with big endian CPU. #endif #define MAX_PARTS 32 #define SPIFLASH "spiflash: " #define MIN(a,b) ((a) < (b) ? (a) : (b)) #define busy_wait(condition, wait) \ do { \ while (condition) { \ spin_unlock_bh(&spidata->mutex); \ if (wait > 1) \ msleep(wait); \ else if ((wait == 1) && need_resched()) \ schedule(); \ else \ udelay(1); \ spin_lock_bh(&spidata->mutex); \ } \ } while (0) static __u32 spiflash_regread32(int reg); static void spiflash_regwrite32(int reg, __u32 data); static __u32 spiflash_sendcmd (int op, u32 addr); int __init spiflash_init (void); void __exit spiflash_exit (void); static int spiflash_probe_chip (void); static int spiflash_erase (struct mtd_info *mtd,struct erase_info *instr); static int spiflash_read (struct mtd_info *mtd, loff_t from,size_t len,size_t *retlen,u_char *buf); static int spiflash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf); /* Flash configuration table */ struct flashconfig { __u32 byte_cnt; __u32 sector_cnt; __u32 sector_size; __u32 cs_addrmask; } flashconfig_tbl[MAX_FLASH] = { { 0, 0, 0, 0}, { STM_1MB_BYTE_COUNT, STM_1MB_SECTOR_COUNT, STM_1MB_SECTOR_SIZE, 0x0}, { STM_2MB_BYTE_COUNT, STM_2MB_SECTOR_COUNT, STM_2MB_SECTOR_SIZE, 0x0}, { STM_4MB_BYTE_COUNT, STM_4MB_SECTOR_COUNT, STM_4MB_SECTOR_SIZE, 0x0}, { STM_8MB_BYTE_COUNT, STM_8MB_SECTOR_COUNT, STM_8MB_SECTOR_SIZE, 0x0}, { STM_16MB_BYTE_COUNT, STM_16MB_SECTOR_COUNT, STM_16MB_SECTOR_SIZE, 0x0} }; /* Mapping of generic opcodes to STM serial flash opcodes */ #define SPI_WRITE_ENABLE 0 #define SPI_WRITE_DISABLE 1 #define SPI_RD_STATUS 2 #define SPI_WR_STATUS 3 #define SPI_RD_DATA 4 #define SPI_FAST_RD_DATA 5 #define SPI_PAGE_PROGRAM 6 #define SPI_SECTOR_ERASE 7 #define SPI_BULK_ERASE 8 #define SPI_DEEP_PWRDOWN 9 #define SPI_RD_SIG 10 #define SPI_MAX_OPCODES 11 struct opcodes { __u16 code; __s8 tx_cnt; __s8 rx_cnt; } stm_opcodes[] = { {STM_OP_WR_ENABLE, 1, 0}, {STM_OP_WR_DISABLE, 1, 0}, {STM_OP_RD_STATUS, 1, 1}, {STM_OP_WR_STATUS, 1, 0}, {STM_OP_RD_DATA, 4, 4}, {STM_OP_FAST_RD_DATA, 5, 0}, {STM_OP_PAGE_PGRM, 8, 0}, {STM_OP_SECTOR_ERASE, 4, 0}, {STM_OP_BULK_ERASE, 1, 0}, {STM_OP_DEEP_PWRDOWN, 1, 0}, {STM_OP_RD_SIG, 4, 1}, }; /* Driver private data structure */ struct spiflash_data { struct mtd_info *mtd; struct mtd_partition *parsed_parts; /* parsed partitions */ void *readaddr; /* memory mapped data for read */ void *mmraddr; /* memory mapped register space */ wait_queue_head_t wq; spinlock_t mutex; int state; }; enum { FL_READY, FL_READING, FL_ERASING, FL_WRITING }; static struct spiflash_data *spidata; extern int parse_redboot_partitions(struct mtd_info *master, struct mtd_partition **pparts); /***************************************************************************************************/ static __u32 spiflash_regread32(int reg) { volatile __u32 *data = (__u32 *)(spidata->mmraddr + reg); return (*data); } static void spiflash_regwrite32(int reg, __u32 data) { volatile __u32 *addr = (__u32 *)(spidata->mmraddr + reg); *addr = data; return; } static __u32 spiflash_sendcmd (int op, u32 addr) { u32 reg; u32 mask; struct opcodes *ptr_opcode; ptr_opcode = &stm_opcodes[op]; busy_wait((reg = spiflash_regread32(SPI_FLASH_CTL)) & SPI_CTL_BUSY, 0); spiflash_regwrite32(SPI_FLASH_OPCODE, ((u32) ptr_opcode->code) | (addr << 8)); reg = (reg & ~SPI_CTL_TX_RX_CNT_MASK) | ptr_opcode->tx_cnt | (ptr_opcode->rx_cnt << 4) | SPI_CTL_START; spiflash_regwrite32(SPI_FLASH_CTL, reg); busy_wait(spiflash_regread32(SPI_FLASH_CTL) & SPI_CTL_BUSY, 0); if (!ptr_opcode->rx_cnt) return 0; reg = (__u32) spiflash_regread32(SPI_FLASH_DATA); switch (ptr_opcode->rx_cnt) { case 1: mask = 0x000000ff; break; case 2: mask = 0x0000ffff; break; case 3: mask = 0x00ffffff; break; default: mask = 0xffffffff; break; } reg &= mask; return reg; } /* Probe SPI flash device * Function returns 0 for failure. * and flashconfig_tbl array index for success. */ static int spiflash_probe_chip (void) { __u32 sig; int flash_size; /* Read the signature on the flash device */ spin_lock_bh(&spidata->mutex); sig = spiflash_sendcmd(SPI_RD_SIG, 0); spin_unlock_bh(&spidata->mutex); switch (sig) { case STM_8MBIT_SIGNATURE: flash_size = FLASH_1MB; break; case STM_16MBIT_SIGNATURE: flash_size = FLASH_2MB; break; case STM_32MBIT_SIGNATURE: flash_size = FLASH_4MB; break; case STM_64MBIT_SIGNATURE: flash_size = FLASH_8MB; break; case STM_128MBIT_SIGNATURE: flash_size = FLASH_16MB; break; default: printk (KERN_WARNING SPIFLASH "Read of flash device signature failed!\n"); return (0); } return (flash_size); } /* wait until the flash chip is ready and grab a lock */ static int spiflash_wait_ready(int state) { DECLARE_WAITQUEUE(wait, current); retry: spin_lock_bh(&spidata->mutex); if (spidata->state != FL_READY) { set_current_state(TASK_UNINTERRUPTIBLE); add_wait_queue(&spidata->wq, &wait); spin_unlock_bh(&spidata->mutex); schedule(); remove_wait_queue(&spidata->wq, &wait); if(signal_pending(current)) return 0; goto retry; } spidata->state = state; return 1; } static inline void spiflash_done(void) { spidata->state = FL_READY; spin_unlock_bh(&spidata->mutex); wake_up(&spidata->wq); } static int spiflash_erase (struct mtd_info *mtd,struct erase_info *instr) { struct opcodes *ptr_opcode; u32 temp, reg; /* sanity checks */ if (instr->addr + instr->len > mtd->size) return (-EINVAL); if (!spiflash_wait_ready(FL_ERASING)) return -EINTR; spiflash_sendcmd(SPI_WRITE_ENABLE, 0); busy_wait((reg = spiflash_regread32(SPI_FLASH_CTL)) & SPI_CTL_BUSY, 0); reg = spiflash_regread32(SPI_FLASH_CTL); ptr_opcode = &stm_opcodes[SPI_SECTOR_ERASE]; temp = ((__u32)instr->addr << 8) | (__u32)(ptr_opcode->code); spiflash_regwrite32(SPI_FLASH_OPCODE, temp); reg = (reg & ~SPI_CTL_TX_RX_CNT_MASK) | ptr_opcode->tx_cnt | SPI_CTL_START; spiflash_regwrite32(SPI_FLASH_CTL, reg); /* this will take some time */ spin_unlock_bh(&spidata->mutex); msleep(800); spin_lock_bh(&spidata->mutex); busy_wait(spiflash_sendcmd(SPI_RD_STATUS, 0) & SPI_STATUS_WIP, 20); spiflash_done(); instr->state = MTD_ERASE_DONE; if (instr->callback) instr->callback (instr); return 0; } static int spiflash_read (struct mtd_info *mtd, loff_t from,size_t len,size_t *retlen,u_char *buf) { u8 *read_addr; /* sanity checks */ if (!len) return (0); if (from + len > mtd->size) return (-EINVAL); /* we always read len bytes */ *retlen = len; if (!spiflash_wait_ready(FL_READING)) return -EINTR; read_addr = (u8 *)(spidata->readaddr + from); memcpy(buf, read_addr, len); spiflash_done(); return 0; } static int spiflash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf) { u32 opcode, bytes_left; *retlen = 0; /* sanity checks */ if (!len) return (0); if (to + len > mtd->size) return (-EINVAL); opcode = stm_opcodes[SPI_PAGE_PROGRAM].code; bytes_left = len; do { u32 xact_len, reg, page_offset, spi_data = 0; xact_len = MIN(bytes_left, sizeof(__u32)); /* 32-bit writes cannot span across a page boundary * (256 bytes). This types of writes require two page * program operations to handle it correctly. The STM part * will write the overflow data to the beginning of the * current page as opposed to the subsequent page. */ page_offset = (to & (STM_PAGE_SIZE - 1)) + xact_len; if (page_offset > STM_PAGE_SIZE) { xact_len -= (page_offset - STM_PAGE_SIZE); } if (!spiflash_wait_ready(FL_WRITING)) return -EINTR; spiflash_sendcmd(SPI_WRITE_ENABLE, 0); switch (xact_len) { case 1: spi_data = (u32) ((u8) *buf); break; case 2: spi_data = (buf[1] << 8) | buf[0]; break; case 3: spi_data = (buf[2] << 16) | (buf[1] << 8) | buf[0]; break; case 4: spi_data = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0]; break; default: spi_data = 0; break; } spiflash_regwrite32(SPI_FLASH_DATA, spi_data); opcode = (opcode & SPI_OPCODE_MASK) | ((__u32)to << 8); spiflash_regwrite32(SPI_FLASH_OPCODE, opcode); reg = spiflash_regread32(SPI_FLASH_CTL); reg = (reg & ~SPI_CTL_TX_RX_CNT_MASK) | (xact_len + 4) | SPI_CTL_START; spiflash_regwrite32(SPI_FLASH_CTL, reg); /* give the chip some time before we start busy waiting */ spin_unlock_bh(&spidata->mutex); schedule(); spin_lock_bh(&spidata->mutex); busy_wait(spiflash_sendcmd(SPI_RD_STATUS, 0) & SPI_STATUS_WIP, 0); spiflash_done(); bytes_left -= xact_len; to += xact_len; buf += xact_len; *retlen += xact_len; } while (bytes_left != 0); return 0; } #ifdef CONFIG_MTD_PARTITIONS static const char *part_probe_types[] = { "cmdlinepart", "RedBoot", NULL }; #endif static int spiflash_probe(struct platform_device *pdev) { int result = -1; int index, num_parts; struct mtd_info *mtd; spidata->mmraddr = ioremap_nocache(SPI_FLASH_MMR, SPI_FLASH_MMR_SIZE); spin_lock_init(&spidata->mutex); init_waitqueue_head(&spidata->wq); spidata->state = FL_READY; if (!spidata->mmraddr) { printk (KERN_WARNING SPIFLASH "Failed to map flash device\n"); kfree(spidata); spidata = NULL; } mtd = kzalloc(sizeof(struct mtd_info), GFP_KERNEL); if (!mtd) { kfree(spidata); return -ENXIO; } if (!(index = spiflash_probe_chip())) { printk (KERN_WARNING SPIFLASH "Found no serial flash device\n"); goto error; } spidata->readaddr = ioremap_nocache(SPI_FLASH_READ, flashconfig_tbl[index].byte_cnt); if (!spidata->readaddr) { printk (KERN_WARNING SPIFLASH "Failed to map flash device\n"); goto error; } mtd->name = "spiflash"; mtd->type = MTD_NORFLASH; mtd->flags = (MTD_CAP_NORFLASH|MTD_WRITEABLE); mtd->size = flashconfig_tbl[index].byte_cnt; mtd->erasesize = flashconfig_tbl[index].sector_size; mtd->writesize = 1; mtd->numeraseregions = 0; mtd->eraseregions = NULL; mtd->erase = spiflash_erase; mtd->read = spiflash_read; mtd->write = spiflash_write; mtd->owner = THIS_MODULE; /* parse redboot partitions */ num_parts = parse_mtd_partitions(mtd, part_probe_types, &spidata->parsed_parts, 0); if (!num_parts) goto error; result = add_mtd_partitions(mtd, spidata->parsed_parts, num_parts); spidata->mtd = mtd; return (result); error: kfree(mtd); kfree(spidata); return -ENXIO; } static int spiflash_remove (struct platform_device *pdev) { del_mtd_partitions (spidata->mtd); kfree(spidata->mtd); return 0; } struct platform_driver spiflash_driver = { .driver.name = "spiflash", .probe = spiflash_probe, .remove = spiflash_remove, }; int __init spiflash_init (void) { spidata = kmalloc(sizeof(struct spiflash_data), GFP_KERNEL); if (!spidata) return (-ENXIO); spin_lock_init(&spidata->mutex); platform_driver_register(&spiflash_driver); return 0; } void __exit spiflash_exit (void) { kfree(spidata); } module_init (spiflash_init); module_exit (spiflash_exit); MODULE_LICENSE("GPL"); MODULE_AUTHOR("OpenWrt.org, Atheros Communications Inc"); MODULE_DESCRIPTION("MTD driver for SPI Flash on Atheros SOC");