/*- * Copyright (c) 2001 Atsushi Onoe * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * Alternatively, this software may be distributed under the terms of the * GNU General Public License ("GPL") version 2 as published by the Free * Software Foundation. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * $Id$ */ #ifndef EXPORT_SYMTAB #define EXPORT_SYMTAB #endif /* * IEEE 802.11 protocol support. */ #if !defined(AUTOCONF_INCLUDED) && !defined(CONFIG_LOCALVERSION) #include #endif #include #include #include #include #include #include "if_media.h" #include /* XXX tunables */ #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */ #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */ #define IEEE80211_RATE2MBS(r) (((r) & IEEE80211_RATE_VAL) / 2) const char *ieee80211_mgt_subtype_name[] = { "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp", "probe_req", "probe_resp", "reserved#6", "reserved#7", "beacon", "atim", "disassoc", "auth", "deauth", "reserved#13", "reserved#14", "reserved#15" }; EXPORT_SYMBOL(ieee80211_mgt_subtype_name); const char *ieee80211_ctl_subtype_name[] = { "reserved#0", "reserved#1", "reserved#2", "reserved#3", "reserved#3", "reserved#5", "reserved#6", "reserved#7", "reserved#8", "reserved#9", "ps_poll", "rts", "cts", "ack", "cf_end", "cf_end_ack" }; EXPORT_SYMBOL(ieee80211_ctl_subtype_name); const char *ieee80211_state_name[IEEE80211_S_MAX] = { "INIT", /* IEEE80211_S_INIT */ "SCAN", /* IEEE80211_S_SCAN */ "AUTH", /* IEEE80211_S_AUTH */ "ASSOC", /* IEEE80211_S_ASSOC */ "RUN" /* IEEE80211_S_RUN */ }; EXPORT_SYMBOL(ieee80211_state_name); const char *ieee80211_wme_acnames[] = { "WME_AC_BE", "WME_AC_BK", "WME_AC_VI", "WME_AC_VO", "WME_UPSD", }; EXPORT_SYMBOL(ieee80211_wme_acnames); static int ieee80211_newstate(struct ieee80211vap *, enum ieee80211_state, int); static void ieee80211_tx_timeout(unsigned long); #ifdef ATH_SUPERG_XR static void ieee80211_start_xrvap(unsigned long); #endif void ieee80211_auth_setup(void); void ieee80211_proto_attach(struct ieee80211com *ic) { ic->ic_protmode = IEEE80211_PROT_CTSONLY; ic->ic_rssi_ewma = 0; ic->ic_wme.wme_hipri_switch_hysteresis = AGGRESSIVE_MODE_SWITCH_HYSTERESIS; /* initialize management frame handlers */ ic->ic_recv_mgmt = ieee80211_recv_mgmt; ic->ic_send_mgmt = ieee80211_send_mgmt; ieee80211_auth_setup(); } void ieee80211_proto_detach(struct ieee80211com *ic) { } void ieee80211_proto_vattach(struct ieee80211vap *vap) { #ifdef notdef vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT; #else vap->iv_rtsthreshold = IEEE80211_RTS_MAX; #endif vap->iv_fragthreshold = 2346; /* XXX not used yet */ vap->iv_fixed_rate = IEEE80211_FIXED_RATE_NONE; init_timer(&vap->iv_mgtsend); init_timer(&vap->iv_xrvapstart); init_timer(&vap->iv_swbmiss); vap->iv_mgtsend.function = ieee80211_tx_timeout; vap->iv_mgtsend.data = (unsigned long) vap; /* protocol state change handler */ vap->iv_newstate = ieee80211_newstate; } void ieee80211_proto_vdetach(struct ieee80211vap *vap) { /* * This should not be needed as we detach when reseting * the state but be conservative here since the * authenticator may do things like spawn kernel threads. */ if (vap->iv_auth->ia_detach) vap->iv_auth->ia_detach(vap); /* * Detach any ACL'ator. */ if (vap->iv_acl != NULL) vap->iv_acl->iac_detach(vap); } /* * Simple-minded authenticator module support. */ #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1) /* XXX well-known names */ static const char *auth_modnames[IEEE80211_AUTH_MAX] = { "wlan_internal", /* IEEE80211_AUTH_NONE */ "wlan_internal", /* IEEE80211_AUTH_OPEN */ "wlan_internal", /* IEEE80211_AUTH_SHARED */ "wlan_xauth", /* IEEE80211_AUTH_8021X */ "wlan_internal", /* IEEE80211_AUTH_AUTO */ "wlan_xauth", /* IEEE80211_AUTH_WPA */ }; static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX]; static const struct ieee80211_authenticator auth_internal = { .ia_name = "wlan_internal", .ia_attach = NULL, .ia_detach = NULL, .ia_node_join = NULL, .ia_node_leave = NULL, }; /* * Setup internal authenticators once; they are never unregistered. */ void ieee80211_auth_setup(void) { ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal); ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal); ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal); } const struct ieee80211_authenticator * ieee80211_authenticator_get(int auth) { if (auth >= IEEE80211_AUTH_MAX) return NULL; if (authenticators[auth] == NULL) ieee80211_load_module(auth_modnames[auth]); return authenticators[auth]; } void ieee80211_authenticator_register(int type, const struct ieee80211_authenticator *auth) { if (type >= IEEE80211_AUTH_MAX) return; authenticators[type] = auth; } EXPORT_SYMBOL(ieee80211_authenticator_register); void ieee80211_authenticator_unregister(int type) { if (type >= IEEE80211_AUTH_MAX) return; authenticators[type] = NULL; } EXPORT_SYMBOL(ieee80211_authenticator_unregister); /* * Very simple-minded authenticator backend module support. */ /* XXX just one for now */ static const struct ieee80211_authenticator_backend *backend = NULL; void ieee80211_authenticator_backend_register( const struct ieee80211_authenticator_backend *be) { printk(KERN_INFO "wlan: %s backend registered\n", be->iab_name); backend = be; } EXPORT_SYMBOL(ieee80211_authenticator_backend_register); void ieee80211_authenticator_backend_unregister( const struct ieee80211_authenticator_backend * be) { if (backend == be) backend = NULL; printk(KERN_INFO "wlan: %s backend unregistered\n", be->iab_name); } EXPORT_SYMBOL(ieee80211_authenticator_backend_unregister); const struct ieee80211_authenticator_backend * ieee80211_authenticator_backend_get(const char *name) { return backend && strcmp(backend->iab_name, name) == 0 ? backend : NULL; } EXPORT_SYMBOL(ieee80211_authenticator_backend_get); /* * Very simple-minded ACL module support. */ /* XXX just one for now */ static const struct ieee80211_aclator *acl = NULL; void ieee80211_aclator_register(const struct ieee80211_aclator *iac) { printk(KERN_INFO "wlan: %s acl policy registered\n", iac->iac_name); acl = iac; } EXPORT_SYMBOL(ieee80211_aclator_register); void ieee80211_aclator_unregister(const struct ieee80211_aclator *iac) { if (acl == iac) acl = NULL; printk(KERN_INFO "wlan: %s acl policy unregistered\n", iac->iac_name); } EXPORT_SYMBOL(ieee80211_aclator_unregister); const struct ieee80211_aclator * ieee80211_aclator_get(const char *name) { if (acl == NULL) ieee80211_load_module("wlan_acl"); return acl && strcmp(acl->iac_name, name) == 0 ? acl : NULL; } EXPORT_SYMBOL(ieee80211_aclator_get); #ifdef IEEE80211_DEBUG void ieee80211_print_essid(const u_int8_t *essid, int len) { int i; const u_int8_t *p; if (len > IEEE80211_NWID_LEN) len = IEEE80211_NWID_LEN; /* determine printable or not */ for (i = 0, p = essid; i < len; i++, p++) { if (*p < ' ' || *p > 0x7e) break; } if (i == len) { printk("\""); for (i = 0, p = essid; i < len; i++, p++) printk("%c", *p); printk("\""); } else { printk("0x"); for (i = 0, p = essid; i < len; i++, p++) printk("%02x", *p); } } EXPORT_SYMBOL(ieee80211_print_essid); void ieee80211_dump_pkt(struct ieee80211com *ic, const u_int8_t *buf, int len, int rate, int rssi, int tx) { const struct ieee80211_frame *wh; int i; wh = (const struct ieee80211_frame *)buf; switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { case IEEE80211_FC1_DIR_NODS: printk("NoDS " MAC_FMT, MAC_ADDR(wh->i_addr2)); printk("->" MAC_FMT, MAC_ADDR(wh->i_addr1)); printk("(" MAC_FMT ")", MAC_ADDR(wh->i_addr3)); break; case IEEE80211_FC1_DIR_TODS: printk("ToDS " MAC_FMT, MAC_ADDR(wh->i_addr2)); printk("->" MAC_FMT, MAC_ADDR(wh->i_addr3)); printk("(" MAC_FMT ")", MAC_ADDR(wh->i_addr1)); break; case IEEE80211_FC1_DIR_FROMDS: printk("FrDS " MAC_FMT, MAC_ADDR(wh->i_addr3)); printk("->" MAC_FMT, MAC_ADDR(wh->i_addr1)); printk("(" MAC_FMT ")", MAC_ADDR(wh->i_addr2)); break; case IEEE80211_FC1_DIR_DSTODS: printk("InDS " MAC_FMT, MAC_ADDR((u_int8_t *)&wh[1])); printk("->" MAC_FMT, MAC_ADDR(wh->i_addr3)); printk("(" MAC_FMT, MAC_ADDR(wh->i_addr2)); printk("->" MAC_FMT ")", MAC_ADDR(wh->i_addr1)); break; } switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { case IEEE80211_FC0_TYPE_DATA: printk(" data"); break; case IEEE80211_FC0_TYPE_MGT: printk(" %s", ieee80211_mgt_subtype_name[ (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) >> IEEE80211_FC0_SUBTYPE_SHIFT]); break; default: printk(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK); break; } if (IEEE80211_QOS_HAS_SEQ(wh)) { const struct ieee80211_qosframe *qwh = (const struct ieee80211_qosframe *)buf; printk(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID, qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : ""); } if (wh->i_fc[1] & IEEE80211_FC1_PROT) { int off; if (tx) off = ieee80211_anyhdrspace(ic, wh); else off = ieee80211_anyhdrsize(wh); printk(" Prot. [IV %.02x %.02x %.02x", buf[off + 0], buf[off + 1], buf[off + 2]); if (buf[off + IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) printk(" %.02x %.02x %.02x", buf[off + 4], buf[off + 5], buf[off + 6]); printk(" KID %u]", buf[off + IEEE80211_WEP_IVLEN] >> 6); } if (rate >= 0) printk(" %dM", rate / 2); if (rssi >= 0) printk(" +%d", rssi); printk("\n"); if (len > 0) { for (i = 0; i < len; i++) { if ((i % 8) == 0) printk(" "); if ((i % 16) == 0) printk("\n"); printk("%02x ", buf[i]); } printk("\n\n"); } } EXPORT_SYMBOL(ieee80211_dump_pkt); #endif int ieee80211_fix_rate(struct ieee80211_node *ni, int flags) { #define RV(v) ((v) & IEEE80211_RATE_VAL) struct ieee80211vap *vap = ni->ni_vap; struct ieee80211com *ic = ni->ni_ic; int i, j, ignore, error; int okrate, badrate, fixedrate; struct ieee80211_rateset *srs, *nrs; u_int8_t r; error = 0; okrate = badrate = fixedrate = 0; srs = &ic->ic_sup_rates[ieee80211_chan2mode(ni->ni_chan)]; nrs = &ni->ni_rates; fixedrate = IEEE80211_FIXED_RATE_NONE; for (i = 0; i < nrs->rs_nrates;) { ignore = 0; if (flags & IEEE80211_F_DOSORT) { /* * Sort rates. */ for (j = i + 1; j < nrs->rs_nrates; j++) { if (RV(nrs->rs_rates[i]) > RV(nrs->rs_rates[j])) { r = nrs->rs_rates[i]; nrs->rs_rates[i] = nrs->rs_rates[j]; nrs->rs_rates[j] = r; } } } r = nrs->rs_rates[i] & IEEE80211_RATE_VAL; badrate = r; /* * remove 0 rates * they don't make sense and can lead to trouble later */ if (r == 0) { nrs->rs_nrates--; for (j = i; j < nrs->rs_nrates; j++) nrs->rs_rates[j] = nrs->rs_rates[j + 1]; nrs->rs_rates[j] = 0; continue; } /* * Check for fixed rate. */ if (r == vap->iv_fixed_rate) fixedrate = r; if (flags & IEEE80211_F_DONEGO) { /* * Check against supported rates. */ for (j = 0; j < srs->rs_nrates; j++) { if (r == RV(srs->rs_rates[j])) { /* * Overwrite with the supported rate * value so any basic rate bit is set. * This ensures that response we send * to stations have the necessary basic * rate bit set. */ nrs->rs_rates[i] = srs->rs_rates[j]; break; } } if (j == srs->rs_nrates) { /* * A rate in the node's rate set is not * supported. If this is a basic rate and we * are operating as an AP then this is an error. * Otherwise we just discard/ignore the rate. * Note that this is important for 11b stations * when they want to associate with an 11g AP. */ if (vap->iv_opmode == IEEE80211_M_HOSTAP && (nrs->rs_rates[i] & IEEE80211_RATE_BASIC)) error++; ignore++; } } if (flags & IEEE80211_F_DODEL) { /* * Delete unacceptable rates. */ if (ignore) { nrs->rs_nrates--; for (j = i; j < nrs->rs_nrates; j++) nrs->rs_rates[j] = nrs->rs_rates[j + 1]; nrs->rs_rates[j] = 0; continue; } } if (!ignore) okrate = nrs->rs_rates[i]; i++; } if (okrate == 0 || error != 0 || ((flags & IEEE80211_F_DOFRATE) && fixedrate != vap->iv_fixed_rate)) return badrate | IEEE80211_RATE_BASIC; else return RV(okrate); #undef RV } /* * Reset 11g-related state. */ void ieee80211_reset_erp(struct ieee80211com *ic, enum ieee80211_phymode mode) { #define IS_11G(m) \ ((m) == IEEE80211_MODE_11G || (m) == IEEE80211_MODE_TURBO_G) ic->ic_flags &= ~IEEE80211_F_USEPROT; /* * Preserve the long slot and nonerp station count if * switching between 11g and turboG. Otherwise, inactivity * will cause the turbo station to disassociate and possibly * try to leave the network. * XXX not right if really trying to reset state */ if (IS_11G(mode) ^ IS_11G(ic->ic_curmode)) { ic->ic_nonerpsta = 0; ic->ic_longslotsta = 0; } /* * Short slot time is enabled only when operating in 11g * and not in an IBSS. We must also honor whether or not * the driver is capable of doing it. */ ieee80211_set_shortslottime(ic, IEEE80211_IS_CHAN_A(ic->ic_curchan) || (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && ic->ic_opmode == IEEE80211_M_HOSTAP && (ic->ic_caps & IEEE80211_C_SHSLOT))); /* * Set short preamble and ERP barker-preamble flags. */ if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) { ic->ic_flags |= IEEE80211_F_SHPREAMBLE; ic->ic_flags &= ~IEEE80211_F_USEBARKER; } else { ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; ic->ic_flags |= IEEE80211_F_USEBARKER; } #undef IS_11G } /* * Set the short slot time state and notify the driver. */ void ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff) { if (onoff) ic->ic_flags |= IEEE80211_F_SHSLOT; else ic->ic_flags &= ~IEEE80211_F_SHSLOT; /* notify driver */ if (ic->ic_updateslot != NULL) ic->ic_updateslot(ic->ic_dev); } /* * Check if the specified rate set supports ERP. * NB: the rate set is assumed to be sorted. */ int ieee80211_iserp_rateset(struct ieee80211com *ic, struct ieee80211_rateset *rs) { static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 }; int i, j; if (rs->rs_nrates < ARRAY_SIZE(rates)) return 0; for (i = 0; i < ARRAY_SIZE(rates); i++) { for (j = 0; j < rs->rs_nrates; j++) { int r = rs->rs_rates[j] & IEEE80211_RATE_VAL; if (rates[i] == r) goto next; if (r > rates[i]) return 0; } return 0; next: ; } return 1; } static const struct ieee80211_rateset basic11g[IEEE80211_MODE_MAX] = { { 0 }, /* IEEE80211_MODE_AUTO */ { 3, { 12, 24, 48 } }, /* IEEE80211_MODE_11A */ { 2, { 2, 4 } }, /* IEEE80211_MODE_11B */ { 4, { 2, 4, 11, 22 } }, /* IEEE80211_MODE_11G (mixed b/g) */ { 0 }, /* IEEE80211_MODE_FH */ { 3, { 12, 24, 48 } }, /* IEEE80211_MODE_TURBO_A */ { 4, { 2, 4, 11, 22 } }, /* IEEE80211_MODE_TURBO_G (mixed b/g) */ }; /* * Mark the basic rates for the 11g rate table based on the * specified mode. For 11b compatibility we mark only 11b * rates. There's also a pseudo 11a-mode used to mark only * the basic OFDM rates; this is used to exclude 11b stations * from an 11g bss. */ void ieee80211_set11gbasicrates(struct ieee80211_rateset *rs, enum ieee80211_phymode mode) { int i, j; KASSERT(mode < IEEE80211_MODE_MAX, ("invalid mode %u", mode)); for (i = 0; i < rs->rs_nrates; i++) { rs->rs_rates[i] &= IEEE80211_RATE_VAL; for (j = 0; j < basic11g[mode].rs_nrates; j++) if (basic11g[mode].rs_rates[j] == rs->rs_rates[i]) { rs->rs_rates[i] |= IEEE80211_RATE_BASIC; break; } } } /* * Deduce the 11g setup by examining the rates * that are marked basic. */ enum ieee80211_phymode ieee80211_get11gbasicrates(struct ieee80211_rateset *rs) { struct ieee80211_rateset basic; int i; memset(&basic, 0, sizeof(basic)); for (i = 0; i < rs->rs_nrates; i++) if (rs->rs_rates[i] & IEEE80211_RATE_BASIC) basic.rs_rates[basic.rs_nrates++] = rs->rs_rates[i] & IEEE80211_RATE_VAL; for (i = 0; i < IEEE80211_MODE_MAX; i++) if (memcmp(&basic, &basic11g[i], sizeof(basic)) == 0) return i; return IEEE80211_MODE_AUTO; } void ieee80211_wme_initparams(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; IEEE80211_LOCK_IRQ(ic); ieee80211_wme_initparams_locked(vap); IEEE80211_UNLOCK_IRQ(ic); } void ieee80211_wme_initparams_locked(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_wme_state *wme = &ic->ic_wme; struct phyParamType { u_int8_t aifsn; u_int8_t logcwmin; u_int8_t logcwmax; u_int16_t txopLimit; u_int8_t acm; }; enum ieee80211_phymode mode; struct phyParamType *pPhyParam, *pBssPhyParam; static struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = { /* IEEE80211_MODE_AUTO */ { 3, 4, 6, 0, 0 }, /* IEEE80211_MODE_11A */ { 3, 4, 6, 0, 0 }, /* IEEE80211_MODE_11B */ { 3, 5, 7, 0, 0 }, /* IEEE80211_MODE_11G */ { 3, 4, 6, 0, 0 }, /* IEEE80211_MODE_FH */ { 3, 5, 7, 0, 0 }, /* IEEE80211_MODE_TURBO */ { 2, 3, 5, 0, 0 }, /* IEEE80211_MODE_TURBO */ { 2, 3, 5, 0, 0 }}; static struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = { /* IEEE80211_MODE_AUTO */ { 7, 4, 10, 0, 0 }, /* IEEE80211_MODE_11A */ { 7, 4, 10, 0, 0 }, /* IEEE80211_MODE_11B */ { 7, 5, 10, 0, 0 }, /* IEEE80211_MODE_11G */ { 7, 4, 10, 0, 0 }, /* IEEE80211_MODE_FH */ { 7, 5, 10, 0, 0 }, /* IEEE80211_MODE_TURBO */ { 7, 3, 10, 0, 0 }, /* IEEE80211_MODE_TURBO */ { 7, 3, 10, 0, 0 }}; static struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = { /* IEEE80211_MODE_AUTO */ { 1, 3, 4, 94, 0 }, /* IEEE80211_MODE_11A */ { 1, 3, 4, 94, 0 }, /* IEEE80211_MODE_11B */ { 1, 4, 5, 188, 0 }, /* IEEE80211_MODE_11G */ { 1, 3, 4, 94, 0 }, /* IEEE80211_MODE_FH */ { 1, 4, 5, 188, 0 }, /* IEEE80211_MODE_TURBO */ { 1, 2, 3, 94, 0 }, /* IEEE80211_MODE_TURBO */ { 1, 2, 3, 94, 0 }}; static struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = { /* IEEE80211_MODE_AUTO */ { 1, 2, 3, 47, 0 }, /* IEEE80211_MODE_11A */ { 1, 2, 3, 47, 0 }, /* IEEE80211_MODE_11B */ { 1, 3, 4, 102, 0 }, /* IEEE80211_MODE_11G */ { 1, 2, 3, 47, 0 }, /* IEEE80211_MODE_FH */ { 1, 3, 4, 102, 0 }, /* IEEE80211_MODE_TURBO */ { 1, 2, 2, 47, 0 }, /* IEEE80211_MODE_TURBO */ { 1, 2, 2, 47, 0 }}; static struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = { /* IEEE80211_MODE_AUTO */ { 3, 4, 10, 0, 0 }, /* IEEE80211_MODE_11A */ { 3, 4, 10, 0, 0 }, /* IEEE80211_MODE_11B */ { 3, 5, 10, 0, 0 }, /* IEEE80211_MODE_11G */ { 3, 4, 10, 0, 0 }, /* IEEE80211_MODE_FH */ { 3, 5, 10, 0, 0 }, /* IEEE80211_MODE_TURBO */ { 2, 3, 10, 0, 0 }, /* IEEE80211_MODE_TURBO */ { 2, 3, 10, 0, 0 }}; static struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = { /* IEEE80211_MODE_AUTO */ { 2, 3, 4, 94, 0 }, /* IEEE80211_MODE_11A */ { 2, 3, 4, 94, 0 }, /* IEEE80211_MODE_11B */ { 2, 4, 5, 188, 0 }, /* IEEE80211_MODE_11G */ { 2, 3, 4, 94, 0 }, /* IEEE80211_MODE_FH */ { 2, 4, 5, 188, 0 }, /* IEEE80211_MODE_TURBO */ { 2, 2, 3, 94, 0 }, /* IEEE80211_MODE_TURBO */ { 2, 2, 3, 94, 0 }}; static struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = { /* IEEE80211_MODE_AUTO */ { 2, 2, 3, 47, 0 }, /* IEEE80211_MODE_11A */ { 2, 2, 3, 47, 0 }, /* IEEE80211_MODE_11B */ { 2, 3, 4, 102, 0 }, /* IEEE80211_MODE_11G */ { 2, 2, 3, 47, 0 }, /* IEEE80211_MODE_FH */ { 2, 3, 4, 102, 0 }, /* IEEE80211_MODE_TURBO */ { 1, 2, 2, 47, 0 }, /* IEEE80211_MODE_TURBO */ { 1, 2, 2, 47, 0 }}; int i; IEEE80211_LOCK_ASSERT(ic); if ((ic->ic_caps & IEEE80211_C_WME) == 0) return; /* * Select mode; we can be called early in which case we * always use auto mode. We know we'll be called when * entering the RUN state with bsschan setup properly * so state will eventually get set correctly */ if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) mode = ieee80211_chan2mode(ic->ic_bsschan); else mode = IEEE80211_MODE_AUTO; for (i = 0; i < WME_NUM_AC; i++) { switch (i) { case WME_AC_BK: pPhyParam = &phyParamForAC_BK[mode]; pBssPhyParam = &phyParamForAC_BK[mode]; break; case WME_AC_VI: pPhyParam = &phyParamForAC_VI[mode]; pBssPhyParam = &bssPhyParamForAC_VI[mode]; break; case WME_AC_VO: pPhyParam = &phyParamForAC_VO[mode]; pBssPhyParam = &bssPhyParamForAC_VO[mode]; break; case WME_AC_BE: default: pPhyParam = &phyParamForAC_BE[mode]; pBssPhyParam = &bssPhyParamForAC_BE[mode]; break; } if (ic->ic_opmode == IEEE80211_M_HOSTAP) { wme->wme_wmeChanParams.cap_wmeParams[i].wmep_acm = pPhyParam->acm; wme->wme_wmeChanParams.cap_wmeParams[i].wmep_aifsn = pPhyParam->aifsn; wme->wme_wmeChanParams.cap_wmeParams[i].wmep_logcwmin = pPhyParam->logcwmin; wme->wme_wmeChanParams.cap_wmeParams[i].wmep_logcwmax = pPhyParam->logcwmax; wme->wme_wmeChanParams.cap_wmeParams[i].wmep_txopLimit = pPhyParam->txopLimit; } else { wme->wme_wmeChanParams.cap_wmeParams[i].wmep_acm = pBssPhyParam->acm; wme->wme_wmeChanParams.cap_wmeParams[i].wmep_aifsn = pBssPhyParam->aifsn; wme->wme_wmeChanParams.cap_wmeParams[i].wmep_logcwmin = pBssPhyParam->logcwmin; wme->wme_wmeChanParams.cap_wmeParams[i].wmep_logcwmax = pBssPhyParam->logcwmax; wme->wme_wmeChanParams.cap_wmeParams[i].wmep_txopLimit = pBssPhyParam->txopLimit; } wme->wme_wmeBssChanParams.cap_wmeParams[i].wmep_acm = pBssPhyParam->acm; wme->wme_wmeBssChanParams.cap_wmeParams[i].wmep_aifsn = pBssPhyParam->aifsn; wme->wme_wmeBssChanParams.cap_wmeParams[i].wmep_logcwmin = pBssPhyParam->logcwmin; wme->wme_wmeBssChanParams.cap_wmeParams[i].wmep_logcwmax = pBssPhyParam->logcwmax; wme->wme_wmeBssChanParams.cap_wmeParams[i].wmep_txopLimit = pBssPhyParam->txopLimit; } /* NB: check ic_bss to avoid NULL deref on initial attach */ if (vap->iv_bss != NULL) { /* * Calculate aggressive mode switching threshold based * on beacon interval. */ wme->wme_hipri_switch_thresh = (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100; ieee80211_wme_updateparams_locked(vap); } } /* * Update WME parameters for ourself and the BSS. */ void ieee80211_wme_updateparams_locked(struct ieee80211vap *vap) { static const struct { u_int8_t aifsn; u_int8_t logcwmin; u_int8_t logcwmax; u_int16_t txopLimit;} phyParam[IEEE80211_MODE_MAX] = { /* IEEE80211_MODE_AUTO */ { 2, 4, 10, 64 }, /* IEEE80211_MODE_11A */ { 2, 4, 10, 64 }, /* IEEE80211_MODE_11B */ { 2, 5, 10, 64 }, /* IEEE80211_MODE_11G */ { 2, 4, 10, 64 }, /* IEEE80211_MODE_FH */ { 2, 5, 10, 64 }, /* IEEE80211_MODE_TURBO */ { 1, 3, 10, 64 }}; struct ieee80211com *ic = vap->iv_ic; struct ieee80211_wme_state *wme = &ic->ic_wme; enum ieee80211_phymode mode; int i; IEEE80211_LOCK_ASSERT(vap->iv_ic); /* set up the channel access parameters for the physical device */ for (i = 0; i < WME_NUM_AC; i++) { wme->wme_chanParams.cap_wmeParams[i].wmep_aifsn = wme->wme_wmeChanParams.cap_wmeParams[i].wmep_aifsn; wme->wme_chanParams.cap_wmeParams[i].wmep_logcwmin = wme->wme_wmeChanParams.cap_wmeParams[i].wmep_logcwmin; wme->wme_chanParams.cap_wmeParams[i].wmep_logcwmax = wme->wme_wmeChanParams.cap_wmeParams[i].wmep_logcwmax; wme->wme_chanParams.cap_wmeParams[i].wmep_txopLimit = wme->wme_wmeChanParams.cap_wmeParams[i].wmep_txopLimit; wme->wme_bssChanParams.cap_wmeParams[i].wmep_aifsn = wme->wme_wmeBssChanParams.cap_wmeParams[i].wmep_aifsn; wme->wme_bssChanParams.cap_wmeParams[i].wmep_logcwmin = wme->wme_wmeBssChanParams.cap_wmeParams[i].wmep_logcwmin; wme->wme_bssChanParams.cap_wmeParams[i].wmep_logcwmax = wme->wme_wmeBssChanParams.cap_wmeParams[i].wmep_logcwmax; wme->wme_bssChanParams.cap_wmeParams[i].wmep_txopLimit = wme->wme_wmeBssChanParams.cap_wmeParams[i].wmep_txopLimit; } /* * Select mode; we can be called early in which case we * always use auto mode. We know we'll be called when * entering the RUN state with bsschan setup properly * so state will eventually get set correctly */ if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) mode = ieee80211_chan2mode(ic->ic_bsschan); else mode = IEEE80211_MODE_AUTO; if ((vap->iv_opmode == IEEE80211_M_HOSTAP && (wme->wme_flags & WME_F_AGGRMODE) != 0) || (vap->iv_opmode != IEEE80211_M_HOSTAP && (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0) || (vap->iv_flags & IEEE80211_F_WME) == 0) { struct ieee80211vap *tmpvap; u_int8_t burstEnabled = 0; /* check if bursting enabled on at least one vap */ TAILQ_FOREACH(tmpvap, &ic->ic_vaps, iv_next) { if (tmpvap->iv_ath_cap & IEEE80211_ATHC_BURST) { burstEnabled = 1; break; } } wme->wme_chanParams.cap_wmeParams[WME_AC_BE].wmep_aifsn = phyParam[mode].aifsn; wme->wme_chanParams.cap_wmeParams[WME_AC_BE].wmep_logcwmin = phyParam[mode].logcwmin; wme->wme_chanParams.cap_wmeParams[WME_AC_BE].wmep_logcwmax = phyParam[mode].logcwmax; wme->wme_chanParams.cap_wmeParams[WME_AC_BE].wmep_txopLimit = burstEnabled ? phyParam[mode].txopLimit : 0; wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE].wmep_aifsn = phyParam[mode].aifsn; wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE].wmep_logcwmin = phyParam[mode].logcwmin; wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE].wmep_logcwmax = phyParam[mode].logcwmax; wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE].wmep_txopLimit = burstEnabled ? phyParam[mode].txopLimit : 0; } if (ic->ic_opmode == IEEE80211_M_HOSTAP && ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) { static const u_int8_t logCwMin[IEEE80211_MODE_MAX] = { /* IEEE80211_MODE_AUTO */ 3, /* IEEE80211_MODE_11A */ 3, /* IEEE80211_MODE_11B */ 4, /* IEEE80211_MODE_11G */ 3, /* IEEE80211_MODE_FH */ 4, /* IEEE80211_MODE_TURBO_A */ 3, /* IEEE80211_MODE_TURBO_G */ 3 }; wme->wme_chanParams.cap_wmeParams[WME_AC_BE].wmep_logcwmin = wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE].wmep_logcwmin = logCwMin[mode]; } if (vap->iv_opmode == IEEE80211_M_HOSTAP) { /* XXX ibss? */ /* * Arrange for a beacon update and bump the parameter * set number so associated stations load the new values. */ wme->wme_bssChanParams.cap_info_count = (wme->wme_bssChanParams.cap_info_count + 1) & WME_QOSINFO_COUNT; vap->iv_flags |= IEEE80211_F_WMEUPDATE; } wme->wme_update(ic); IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, "%s: WME params updated, cap_info 0x%x\n", __func__, vap->iv_opmode == IEEE80211_M_STA ? wme->wme_wmeChanParams.cap_info_count : wme->wme_bssChanParams.cap_info_count); } EXPORT_SYMBOL(ieee80211_wme_updateparams); void ieee80211_wme_updateparams(struct ieee80211vap *vap) { struct ieee80211com *ic = vap->iv_ic; if (ic->ic_caps & IEEE80211_C_WME) { IEEE80211_LOCK_IRQ(ic); ieee80211_wme_updateparams_locked(vap); IEEE80211_UNLOCK_IRQ(ic); } } /* * Start a vap. If this is the first vap running on the * underlying device then we first bring it up. */ int ieee80211_init(struct net_device *dev, int forcescan) { #define IS_RUNNING(_dev) \ ((_dev->flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP)) struct ieee80211vap *vap = netdev_priv(dev); struct ieee80211com *ic = vap->iv_ic; struct net_device *parent = ic->ic_dev; IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, "start running (state=%d)\n", vap->iv_state); if ((dev->flags & IFF_RUNNING) == 0) { if (ic->ic_nopened++ == 0 && (parent->flags & IFF_RUNNING) == 0) dev_open(parent); /* * Mark us running. Note that we do this after * opening the parent device to avoid recursion. */ dev->flags |= IFF_RUNNING; /* mark us running */ } /* * If the parent is up and running, then kick the * 802.11 state machine as appropriate. * XXX parent should always be up+running */ if (IS_RUNNING(ic->ic_dev)) { if (vap->iv_opmode == IEEE80211_M_STA) { if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL) { /* Try to be intelligent about clocking the * state machine. If we're currently in RUN * state then we should be able to apply any * new state/parameters simply by * re-associating. Otherwise we need to * re-scan to select an appropriate ap. */ if (vap->iv_state != IEEE80211_S_RUN || forcescan) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, "Bringing vap %p[%s] " "to %s\n", vap, vap->iv_nickname, ieee80211_state_name [IEEE80211_S_SCAN]); ieee80211_new_state(vap, IEEE80211_S_SCAN, 0); } else { IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, "Bringing vap %p[%s] " "to %s\n", vap, vap->iv_nickname, ieee80211_state_name [IEEE80211_S_ASSOC]); ieee80211_new_state(vap, IEEE80211_S_ASSOC, 1); } } } else { /* * When the old state is running the vap must * be brought to init. */ if (vap->iv_state == IEEE80211_S_RUN) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, "Bringing vap %p[%s] to %s\n", vap, vap->iv_nickname, ieee80211_state_name [IEEE80211_S_INIT]); ieee80211_new_state(vap, IEEE80211_S_INIT, -1); } /* * For monitor+wds modes there's nothing to do but * start running. Otherwise, if this is the first * vap to be brought up, start a scan which may be * preempted if the station is locked to a particular * channel. */ if (vap->iv_opmode == IEEE80211_M_MONITOR || vap->iv_opmode == IEEE80211_M_WDS) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, "Bringing vap %p[%s] to %s\n", vap, vap->iv_nickname, ieee80211_state_name [IEEE80211_S_RUN]); ieee80211_new_state(vap, IEEE80211_S_RUN, -1); } else { IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, "Bringing vap %p[%s] to %s\n", vap, vap->iv_nickname, ieee80211_state_name [IEEE80211_S_SCAN]); ieee80211_new_state(vap, IEEE80211_S_SCAN, 0); } } } return 0; #undef IS_RUNNING } int ieee80211_open(struct net_device *dev) { return ieee80211_init(dev, 0); } /* * Start all runnable VAPs on a device. */ void ieee80211_start_running(struct ieee80211com *ic) { struct ieee80211vap *vap; struct net_device *dev; /* XXX locking */ TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { dev = vap->iv_dev; /* NB: avoid recursion */ if ((dev->flags & IFF_UP) && !(dev->flags & IFF_RUNNING)) ieee80211_open(dev); } } EXPORT_SYMBOL(ieee80211_start_running); /* * Stop a vap. We force it down using the state machine * then mark its device not running. If this is the last * vap running on the underlying device then we close it * too to ensure it will be properly initialized when the * next vap is brought up. */ int ieee80211_stop(struct net_device *dev) { struct ieee80211vap *vap = netdev_priv(dev); struct ieee80211com *ic = vap->iv_ic; struct net_device *parent = ic->ic_dev; IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, "%s\n", "stop running"); ieee80211_new_state(vap, IEEE80211_S_INIT, -1); if (dev->flags & IFF_RUNNING) { dev->flags &= ~IFF_RUNNING; /* mark us stopped */ del_timer(&vap->iv_mgtsend); if (--ic->ic_nopened == 0 && (parent->flags & IFF_RUNNING)) dev_close(parent); } #ifdef ATH_SUPERG_XR /* * also stop the XR vap. */ if (vap->iv_xrvap && !(vap->iv_flags & IEEE80211_F_XR)) { ieee80211_stop(vap->iv_xrvap->iv_dev); del_timer(&vap->iv_xrvapstart); vap->iv_xrvap->iv_dev->flags = dev->flags; } #endif return 0; } EXPORT_SYMBOL(ieee80211_stop); /* * Stop all VAPs running on a device. */ void ieee80211_stop_running(struct ieee80211com *ic) { struct ieee80211vap *vap; struct net_device *dev; /* XXX locking */ TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { dev = vap->iv_dev; if (dev->flags & IFF_RUNNING) /* NB: avoid recursion */ ieee80211_stop(dev); } } EXPORT_SYMBOL(ieee80211_stop_running); #ifdef ATH_SUPERG_DYNTURBO /* * Switch between turbo and non-turbo operating modes. * Use the specified channel flags to locate the new * channel, update 802.11 state, and then call back into * the driver to effect the change. */ void ieee80211_dturbo_switch(struct ieee80211com *ic, int newflags) { #ifdef IEEE80211_DEBUG /* XXX use first vap for debug flags */ struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps); #endif struct ieee80211_channel *chan; chan = ieee80211_find_channel(ic, ic->ic_bsschan->ic_freq, newflags); if (chan == NULL) { /* XXX should not happen */ IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPG, "%s: no channel with freq %u flags 0x%x\n", __func__, ic->ic_bsschan->ic_freq, newflags); return; } IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPG, "%s: %s -> %s (freq %u flags 0x%x)\n", __func__, ieee80211_phymode_name[ieee80211_chan2mode(ic->ic_bsschan)], ieee80211_phymode_name[ieee80211_chan2mode(chan)], chan->ic_freq, chan->ic_flags); ic->ic_bsschan = chan; ic->ic_curchan = chan; ic->ic_set_channel(ic); /* NB: do not need to reset ERP state because in sta mode */ } EXPORT_SYMBOL(ieee80211_dturbo_switch); #endif /* ATH_SUPERG_DYNTURBO */ void ieee80211_beacon_miss(struct ieee80211com *ic) { struct ieee80211vap *vap; if (ic->ic_flags & IEEE80211_F_SCAN) { /* XXX check ic_curchan != ic_bsschan? */ return; } /* XXX locking */ TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, "%s\n", "beacon miss"); /* * Our handling is only meaningful for stations that are * associated; any other conditions else will be handled * through different means (e.g. the tx timeout on mgt frames). */ if (vap->iv_opmode != IEEE80211_M_STA || vap->iv_state != IEEE80211_S_RUN) continue; if (ic->ic_roaming == IEEE80211_ROAMING_AUTO) { #ifdef ATH_SUPERG_DYNTURBO /* * If we receive a beacon miss interrupt when using * dynamic turbo, attempt to switch modes before * reassociating. */ if (IEEE80211_ATH_CAP(vap, vap->iv_bss, IEEE80211_ATHC_TURBOP)) ieee80211_dturbo_switch(ic, ic->ic_bsschan->ic_flags ^ IEEE80211_CHAN_TURBO); #endif /* ATH_SUPERG_DYNTURBO */ /* * Try to reassociate before scanning for a new ap. */ ieee80211_new_state(vap, IEEE80211_S_ASSOC, 1); } else { /* * Somebody else is controlling state changes (e.g. * a user-mode app) don't do anything that would * confuse them; just drop into scan mode so they'll * notified of the state change and given control. */ ieee80211_new_state(vap, IEEE80211_S_SCAN, 0); } } } EXPORT_SYMBOL(ieee80211_beacon_miss); /* * STA software beacon timer callback. This is called * only when we have a series beacon misses. */ static void ieee80211_sta_swbmiss(unsigned long arg) { struct ieee80211vap *vap = (struct ieee80211vap *)arg; ieee80211_beacon_miss(vap->iv_ic); } /* * Per-ieee80211vap watchdog timer callback. This * is used only to timeout the xmit of management frames. */ static void ieee80211_tx_timeout(unsigned long arg) { struct ieee80211vap *vap = (struct ieee80211vap *)arg; IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: state %s%s\n", __func__, ieee80211_state_name[vap->iv_state], vap->iv_ic->ic_flags & IEEE80211_F_SCAN ? ", scan active" : ""); if (vap->iv_state != IEEE80211_S_INIT && (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { /* * NB: it's safe to specify a timeout as the reason here; * it'll only be used in the right state. */ ieee80211_new_state(vap, IEEE80211_S_SCAN, IEEE80211_SCAN_FAIL_TIMEOUT); } } static void sta_disassoc(void *arg, struct ieee80211_node *ni) { struct ieee80211vap *vap = arg; if (ni->ni_vap == vap && ni->ni_associd != 0) { IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_DISASSOC, IEEE80211_REASON_ASSOC_LEAVE); ieee80211_node_leave(ni); } } static void sta_deauth(void *arg, struct ieee80211_node *ni) { struct ieee80211vap *vap = arg; if (ni->ni_vap == vap) IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_DEAUTH, IEEE80211_REASON_ASSOC_LEAVE); } /* * Context: softIRQ (tasklet) and process */ int ieee80211_new_state(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct ieee80211com *ic = vap->iv_ic; int rc; IEEE80211_VAPS_LOCK_BH(ic); rc = vap->iv_newstate(vap, nstate, arg); IEEE80211_VAPS_UNLOCK_BH(ic); return rc; } static int __ieee80211_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct ieee80211com *ic = vap->iv_ic; struct ieee80211_node *ni; enum ieee80211_state ostate; ostate = vap->iv_state; vap->iv_state = nstate; /* state transition */ del_timer(&vap->iv_mgtsend); if ((vap->iv_opmode != IEEE80211_M_HOSTAP) && (ostate != IEEE80211_S_SCAN)) ieee80211_cancel_scan(vap); /* background scan */ ni = vap->iv_bss; /* NB: no reference held */ switch (nstate) { case IEEE80211_S_INIT: switch (ostate) { case IEEE80211_S_INIT: break; case IEEE80211_S_RUN: switch (vap->iv_opmode) { case IEEE80211_M_STA: IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_DISASSOC, IEEE80211_REASON_ASSOC_LEAVE); ieee80211_sta_leave(ni); break; case IEEE80211_M_HOSTAP: ieee80211_iterate_nodes(&ic->ic_sta, sta_disassoc, vap); break; default: break; } goto reset; case IEEE80211_S_ASSOC: switch (vap->iv_opmode) { case IEEE80211_M_STA: IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_DEAUTH, IEEE80211_REASON_AUTH_LEAVE); break; case IEEE80211_M_HOSTAP: ieee80211_iterate_nodes(&ic->ic_sta, sta_deauth, vap); break; default: break; } goto reset; case IEEE80211_S_SCAN: ieee80211_cancel_scan(vap); goto reset; case IEEE80211_S_AUTH: reset: ieee80211_reset_bss(vap); break; } if (vap->iv_auth != NULL && vap->iv_auth->ia_detach != NULL) vap->iv_auth->ia_detach(vap); break; case IEEE80211_S_SCAN: switch (ostate) { case IEEE80211_S_INIT: createibss: if ((vap->iv_opmode == IEEE80211_M_HOSTAP || vap->iv_opmode == IEEE80211_M_IBSS || vap->iv_opmode == IEEE80211_M_AHDEMO) && vap->iv_des_chan != IEEE80211_CHAN_ANYC) { /* * AP operation and we already have a channel; * bypass the scan and startup immediately. */ ieee80211_create_ibss(vap, vap->iv_des_chan); } else { ieee80211_check_scan(vap, IEEE80211_SCAN_ACTIVE | IEEE80211_SCAN_FLUSH, IEEE80211_SCAN_FOREVER, vap->iv_des_nssid, vap->iv_des_ssid, NULL); } break; case IEEE80211_S_SCAN: case IEEE80211_S_AUTH: case IEEE80211_S_ASSOC: /* * These can happen either because of a timeout * on an assoc/auth response or because of a * change in state that requires a reset. For * the former we're called with a non-zero arg * that is the cause for the failure; pass this * to the scan code so it can update state. * Otherwise trigger a new scan unless we're in * manual roaming mode in which case an application * must issue an explicit scan request. */ if (arg != 0) ieee80211_scan_assoc_fail(ic, vap->iv_bss->ni_macaddr, arg); /* ic_roaming is relevant to STA mode only. Since DFS * CAC does a SCAN -> SCAN transition, this code was * causing a spurious scan that was stopping DFS CAC * altogether */ if (vap->iv_opmode == IEEE80211_M_STA && ic->ic_roaming == IEEE80211_ROAMING_AUTO) ieee80211_check_scan(vap, IEEE80211_SCAN_ACTIVE, IEEE80211_SCAN_FOREVER, vap->iv_des_nssid, vap->iv_des_ssid, NULL); break; case IEEE80211_S_RUN: /* beacon miss */ if (vap->iv_opmode == IEEE80211_M_STA) { ieee80211_sta_leave(ni); vap->iv_flags &= ~IEEE80211_F_SIBSS; /* XXX */ if (ic->ic_roaming == IEEE80211_ROAMING_AUTO) ieee80211_check_scan(vap, IEEE80211_SCAN_ACTIVE, IEEE80211_SCAN_FOREVER, vap->iv_des_nssid, vap->iv_des_ssid, NULL); } else { ieee80211_iterate_nodes(&ic->ic_sta, sta_disassoc, vap); goto createibss; } break; } break; case IEEE80211_S_AUTH: /* auth frames are possible between IBSS nodes, * see 802.11-1999, chapter 5.7.6 */ KASSERT(vap->iv_opmode == IEEE80211_M_STA || vap->iv_opmode == IEEE80211_M_IBSS, ("switch to %s state when operating in mode %u", ieee80211_state_name[nstate], vap->iv_opmode)); switch (ostate) { case IEEE80211_S_INIT: case IEEE80211_S_SCAN: IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_AUTH, 1); break; case IEEE80211_S_AUTH: case IEEE80211_S_ASSOC: switch (arg) { case IEEE80211_FC0_SUBTYPE_AUTH: /* ??? */ IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_AUTH, 2); break; case IEEE80211_FC0_SUBTYPE_DEAUTH: IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_AUTH, 1); break; } break; case IEEE80211_S_RUN: switch (arg) { case IEEE80211_FC0_SUBTYPE_AUTH: IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_AUTH, 2); vap->iv_state = ostate; /* stay RUN */ break; case IEEE80211_FC0_SUBTYPE_DEAUTH: ieee80211_sta_leave(ni); if (vap->iv_opmode == IEEE80211_M_STA && ic->ic_roaming == IEEE80211_ROAMING_AUTO) { /* try to reauth */ IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_AUTH, 1); } break; } break; } break; case IEEE80211_S_ASSOC: KASSERT(vap->iv_opmode == IEEE80211_M_STA, ("switch to %s state when operating in mode %u", ieee80211_state_name[nstate], vap->iv_opmode)); switch (ostate) { case IEEE80211_S_INIT: case IEEE80211_S_SCAN: IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, "%s: invalid transition\n", __func__); break; case IEEE80211_S_AUTH: case IEEE80211_S_ASSOC: IEEE80211_SEND_MGMT(ni, IEEE80211_FC0_SUBTYPE_ASSOC_REQ, 0); break; case IEEE80211_S_RUN: ieee80211_sta_leave(ni); if (ic->ic_roaming == IEEE80211_ROAMING_AUTO) { /* NB: caller specifies ASSOC/REASSOC by arg */ IEEE80211_SEND_MGMT(ni, arg ? IEEE80211_FC0_SUBTYPE_REASSOC_REQ : IEEE80211_FC0_SUBTYPE_ASSOC_REQ, 0); } break; } break; case IEEE80211_S_RUN: if (vap->iv_flags & IEEE80211_F_WPA) { /* XXX validate prerequisites */ } switch (ostate) { case IEEE80211_S_INIT: if (vap->iv_opmode == IEEE80211_M_MONITOR || vap->iv_opmode == IEEE80211_M_WDS || vap->iv_opmode == IEEE80211_M_HOSTAP) { /* * Already have a channel; bypass the * scan and startup immediately. */ ieee80211_create_ibss(vap, ic->ic_curchan); /* In WDS mode, allocate and initialize peer node. */ if (vap->iv_opmode == IEEE80211_M_WDS) { /* XXX: This is horribly non-atomic. */ struct ieee80211_node *wds_ni = ieee80211_find_node(&ic->ic_sta, vap->wds_mac); if (wds_ni == NULL) { wds_ni = ieee80211_alloc_node_table( vap, vap->wds_mac); if (wds_ni != NULL) { ieee80211_add_wds_addr( &ic->ic_sta, wds_ni, vap->wds_mac, 1); ieee80211_ref_node(wds_ni); /* pin in memory */ } else IEEE80211_DPRINTF( vap, IEEE80211_MSG_NODE, "%s: Unable to " "allocate node for " "WDS: " MAC_FMT "\n", __func__, MAC_ADDR( vap->wds_mac) ); } if (wds_ni != NULL) { ieee80211_node_authorize(wds_ni); wds_ni->ni_chan = vap->iv_bss->ni_chan; wds_ni->ni_capinfo = ni->ni_capinfo; wds_ni->ni_associd = 1; wds_ni->ni_ath_flags = vap->iv_ath_cap; } } break; } /* fall thru... */ case IEEE80211_S_AUTH: IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, "%s: invalid transition\n", __func__); break; case IEEE80211_S_RUN: break; case IEEE80211_S_SCAN: /* adhoc/hostap mode */ case IEEE80211_S_ASSOC: /* infra mode */ KASSERT(ni->ni_txrate < ni->ni_rates.rs_nrates, ("%s: bogus xmit rate %u setup", __func__, ni->ni_txrate)); #ifdef IEEE80211_DEBUG if (ieee80211_msg_debug(vap)) { ieee80211_note(vap, "%s with " MAC_FMT " ssid ", (vap->iv_opmode == IEEE80211_M_STA ? "associated" : "synchronized "), MAC_ADDR(vap->iv_bssid)); ieee80211_print_essid(vap->iv_bss->ni_essid, ni->ni_esslen); printk(" channel %d start %uMb\n", ieee80211_chan2ieee(ic, ic->ic_curchan), IEEE80211_RATE2MBS(ni->ni_rates.rs_rates[ni->ni_txrate])); } #endif if (vap->iv_opmode == IEEE80211_M_STA) { ieee80211_scan_assoc_success(ic, ni->ni_macaddr); ieee80211_notify_node_join(ni, (arg == IEEE80211_FC0_SUBTYPE_ASSOC_RESP) | \ (arg == IEEE80211_FC0_SUBTYPE_REASSOC_RESP)); } break; } /* WDS/Repeater: Start software beacon timer for STA */ if (ostate != IEEE80211_S_RUN && (vap->iv_opmode == IEEE80211_M_STA && vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS)) { vap->iv_swbmiss.function = ieee80211_sta_swbmiss; vap->iv_swbmiss.data = (unsigned long) vap; vap->iv_swbmiss_period = IEEE80211_TU_TO_JIFFIES( vap->iv_ic->ic_bmissthreshold * ni->ni_intval); mod_timer(&vap->iv_swbmiss, jiffies + vap->iv_swbmiss_period); } /* * Start/stop the authenticator when operating as an * AP. We delay until here to allow configuration to * happen out of order. */ /* XXX WDS? */ if (vap->iv_opmode == IEEE80211_M_HOSTAP && /* XXX IBSS/AHDEMO */ vap->iv_auth->ia_attach != NULL) { /* XXX check failure */ vap->iv_auth->ia_attach(vap); } else if (vap->iv_auth->ia_detach != NULL) vap->iv_auth->ia_detach(vap); /* * When 802.1x is not in use mark the port authorized * at this point so traffic can flow. */ if (ni->ni_authmode != IEEE80211_AUTH_8021X) ieee80211_node_authorize(ni); #ifdef ATH_SUPERG_XR /* * fire a timer to bring up XR vap if configured. */ if (ostate != IEEE80211_S_RUN && vap->iv_xrvap && !(vap->iv_flags & IEEE80211_F_XR)) { vap->iv_xrvapstart.function = ieee80211_start_xrvap; vap->iv_xrvapstart.data = (unsigned long) vap->iv_xrvap; mod_timer(&vap->iv_xrvapstart, jiffies + HZ); /* start xr vap on next second */ /* * do not let the normal vap automatically bring up XR vap. * let the timer handler start the XR vap. if you let the * normal vap automatically start the XR vap normal vap will not * have the bssid initialized and the XR vap will use the * invalid bssid in XRIE of its beacon. */ if (vap->iv_xrvap->iv_flags_ext & IEEE80211_FEXT_SCAN_PENDING) vap->iv_xrvap->iv_flags_ext &= ~IEEE80211_FEXT_SCAN_PENDING; } /* * when an XR vap transitions to RUN state, * normal vap needs to update the XR IE * with the xr vaps MAC address. */ if (vap->iv_flags & IEEE80211_F_XR) vap->iv_xrvap->iv_flags |= IEEE80211_F_XRUPDATE; #endif break; } return 0; } /* Get the dominant state of the device (init, running, or scanning * (and/or associating)) */ static int get_dominant_state(struct ieee80211com *ic) { int nscanning = 0; int nrunning = 0; struct ieee80211vap *tmpvap; TAILQ_FOREACH(tmpvap, &ic->ic_vaps, iv_next) { if (tmpvap->iv_opmode == IEEE80211_M_MONITOR) /* skip monitor vaps as their * S_RUN shouldn't have any * influence on modifying state * transition */ continue; if (tmpvap->iv_state == IEEE80211_S_RUN) nrunning++; else if (tmpvap->iv_state == IEEE80211_S_SCAN || tmpvap->iv_state == IEEE80211_S_AUTH || tmpvap->iv_state == IEEE80211_S_ASSOC) { KASSERT((nscanning <= 1), ("Two VAPs cannot scan at " "the same time")); nscanning++; } } KASSERT(!(nscanning && nrunning), ("SCAN and RUN can't happen at the " "same time")); KASSERT((nscanning <= 1), ("Two VAPs must not SCAN at the " "same time")); if (nrunning > 0) return IEEE80211_S_RUN; else if (nscanning > 0) return IEEE80211_S_SCAN; else return IEEE80211_S_INIT; } static void dump_vap_states(struct ieee80211com *ic, struct ieee80211vap *highlighed) { /* RE-count the number of VAPs in RUN, SCAN states */ int nrunning = 0; int nscanning = 0; struct ieee80211vap *tmpvap; TAILQ_FOREACH(tmpvap, &ic->ic_vaps, iv_next) { IEEE80211_DPRINTF(tmpvap, IEEE80211_MSG_STATE, "%s: VAP %s%p[%24s]%s = %s%s%s.\n", __func__, (highlighed == tmpvap ? "*" : " "), tmpvap, tmpvap->iv_nickname, (highlighed == tmpvap ? "*" : " "), ieee80211_state_name[tmpvap->iv_state], (tmpvap->iv_state == IEEE80211_S_RUN) ? "[RUNNING]" : "", (tmpvap->iv_state == IEEE80211_S_SCAN || tmpvap->iv_state == IEEE80211_S_AUTH || tmpvap->iv_state == IEEE80211_S_ASSOC) ? "[SCANNING]" : "" ); /* Ignore monitors they are passive */ if (tmpvap->iv_opmode == IEEE80211_M_MONITOR) { continue; } if (tmpvap->iv_state == IEEE80211_S_RUN) { KASSERT((nscanning == 0), ("SCAN and RUN can't happen " "at the same time")); nrunning++; } if (tmpvap->iv_state == IEEE80211_S_SCAN || /* STA in WDS/Repeater */ tmpvap->iv_state == IEEE80211_S_AUTH || tmpvap->iv_state == IEEE80211_S_ASSOC) { KASSERT((nscanning == 0), ("Two VAPs cannot scan at " "the same time")); KASSERT((nrunning == 0), ("SCAN and RUN can't happen " "at the same time")); nscanning++; } } } static int ieee80211_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg) { struct ieee80211com *ic = vap->iv_ic; enum ieee80211_state ostate; enum ieee80211_state dstate; int blocked = 0; struct ieee80211vap *tmpvap; ostate = vap->iv_state; dstate = get_dominant_state(ic); IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %p[%s] %s -> %s (dominant %s)\n", __func__, vap, vap->iv_nickname, ieee80211_state_name[ostate], ieee80211_state_name[nstate], ieee80211_state_name[dstate]); switch (nstate) { case IEEE80211_S_AUTH: case IEEE80211_S_ASSOC: case IEEE80211_S_SCAN: switch (dstate) { case IEEE80211_S_RUN: if (vap->iv_opmode == IEEE80211_M_MONITOR || vap->iv_opmode == IEEE80211_M_WDS || vap->iv_opmode == IEEE80211_M_HOSTAP) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: Jumping directly to RUN " "on VAP %p [%s].\n", __func__, vap, vap->iv_nickname); /* One or more VAPs are running, so * non-station VAPs can skip SCAN/AUTH/ASSOC * states and just run. */ __ieee80211_newstate(vap, IEEE80211_S_RUN, arg); } else { /* We'll use this flag briefly to mark * transition in progress */ ic->ic_flags_ext |= IEEE80211_FEXT_SCAN_PENDING; /* IEEE80211_M_IBSS or IEEE80211_M_STA VAP * is forced to scan, we need to change * all other VAPs state to S_INIT and pend for * the scan completion */ TAILQ_FOREACH(tmpvap, &ic->ic_vaps, iv_next) { if ((vap != tmpvap) && (tmpvap->iv_opmode != IEEE80211_M_MONITOR)) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: Setting " "SCAN_PENDING " "flag on " "VAP %p " "[%s].\n", __func__, tmpvap, tmpvap-> iv_nickname); tmpvap->iv_flags_ext |= IEEE80211_FEXT_SCAN_PENDING; if (tmpvap->iv_state != IEEE80211_S_INIT) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: " "Forcing " "INIT " "state " "on " "VAP " "%p " "[%s].\n", __func__, tmpvap, tmpvap-> iv_nickname); tmpvap->iv_newstate(tmpvap, IEEE80211_S_INIT, 0); } else { IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: " "NOT " "forcing " "INIT " "state " "on " "VAP " "%p " "[%s].\n", __func__, tmpvap, tmpvap-> iv_nickname); } } } /* We used this flag briefly to mark transition in progress */ ic->ic_flags_ext &= ~IEEE80211_FEXT_SCAN_PENDING; /* Transition S_INIT -> S_SCAN */ __ieee80211_newstate(vap, nstate, arg); break; } break; case IEEE80211_S_SCAN: case IEEE80211_S_AUTH: case IEEE80211_S_ASSOC: /* this VAP was scanning */ /* STA in WDS/Repeater needs to bring up other VAPs */ if (ostate == IEEE80211_S_SCAN || ostate == IEEE80211_S_AUTH || ostate == IEEE80211_S_ASSOC) { /* Transition (S_SCAN|S_AUTH|S_ASSOC) -> * S_SCAN */ __ieee80211_newstate(vap, nstate, arg); } else { /* Someone else is scanning, so block the * transition */ vap->iv_flags_ext |= IEEE80211_FEXT_SCAN_PENDING; __ieee80211_newstate(vap, IEEE80211_S_INIT, arg); blocked = 1; } break; case IEEE80211_S_INIT: /* Transition S_INIT -> S_SCAN */ __ieee80211_newstate(vap, nstate, arg); break; } break; case IEEE80211_S_RUN: /* this VAP was scanning */ /* STA in WDS/Repeater needs to bring up other VAPs */ if (ostate == IEEE80211_S_SCAN || ostate == IEEE80211_S_AUTH || ostate == IEEE80211_S_ASSOC) { /* Transition (S_SCAN|S_AUTH|S_ASSOC) -> S_RUN */ __ieee80211_newstate(vap, nstate, arg); /* Then bring up all other vaps pending on the scan */ dstate = get_dominant_state(ic); if (dstate == IEEE80211_S_RUN) { TAILQ_FOREACH(tmpvap, &ic->ic_vaps, iv_next) { if ((vap != tmpvap) && (tmpvap->iv_opmode != IEEE80211_M_MONITOR) && (tmpvap->iv_flags_ext & IEEE80211_FEXT_SCAN_PENDING)) { IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: Clearing " "SCAN_PENDING " "flag from VAP " "%p [%s] and " "transitioning " "to RUN state.\n", __func__, tmpvap, tmpvap->iv_nickname); tmpvap->iv_flags_ext &= ~IEEE80211_FEXT_SCAN_PENDING; if (tmpvap->iv_state != IEEE80211_S_RUN) { tmpvap->iv_newstate(tmpvap, IEEE80211_S_RUN, 0); } else if (tmpvap->iv_opmode == IEEE80211_M_HOSTAP) { /* Force other AP through * -> INIT -> RUN to make * sure beacons are * reallocated */ tmpvap->iv_newstate(tmpvap, IEEE80211_S_INIT, 0); tmpvap->iv_newstate(tmpvap, IEEE80211_S_RUN, 0); } } } } } else if (dstate == IEEE80211_S_SCAN) { /* Force to scan pending... someone is scanning */ vap->iv_flags_ext |= IEEE80211_FEXT_SCAN_PENDING; __ieee80211_newstate(vap, IEEE80211_S_INIT, arg); blocked = 1; } else { __ieee80211_newstate(vap, nstate, arg); } break; default: __ieee80211_newstate(vap, nstate, arg); } IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, "%s: %s requested transition %s -> %s on VAP %p [%s]. " "Dominant state is %s.\n", __func__, (blocked ? "BLOCKED" : "ALLOWED"), ieee80211_state_name[ostate], ieee80211_state_name[nstate], vap, vap->iv_nickname, ieee80211_state_name[dstate]); dump_vap_states(ic, vap); return 0; } #ifdef ATH_SUPERG_XR /* * start the XR vap . * called from a timer when normal vap enters RUN state . */ static void ieee80211_start_xrvap(unsigned long data) { struct ieee80211vap *vap = (struct ieee80211vap *)data; /* make sure that the normal vap is still in RUN state */ if (vap->iv_xrvap->iv_state == IEEE80211_S_RUN) ieee80211_init(vap->iv_dev, 0); } #endif